mikroPascal PRO for PIC32"

mikroPascal PRO for PIC32 is a full-featured C compiler for PIC32
MCUs from Microchip. It is designed for developing, building and
debugging PIC32-based embedded applications. This development
environment has a wide range of features such as: easy-to-use
IDE, very compact and efficient code, many hardware and software
libraries, comprehensive documentation, software simulator, COFF file
generation, SSA optimization (up to 30% code reduction) and many
more. Numerous ready-to-use and well-explained examples will give a
good start for your embedded project.

EJMikroElektronika

SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD . .

Manual

-
o
Q
=
O
@

. V\Ac\\xlv\rQ Wk g\wele,

mikoPascal PRO for PIC32

Table of Contents

CHAPTER 1
INTRODUCTION
Introduction to mikroPascal PRO for PIC32
Features
Where to Start
Software License Agreement
mikroElektronika Associates License Statement and Limited Warranty
IMPORTANT - READ CAREFULLY
LIMITED WARRANTY
HIGH RISK ACTIVITIES
GENERAL PROVISIONS
Technical Support
How to Register
Who Gets the License Key
How to Get License Key
After Receving the License Key
CHAPTER 2
mikroPascal PRO for PIC32
Environment
Main Menu Options
File
File Menu Options
Edit
Edit Menu Options
Find Text
Replace Text
Find In Files
Go To Line
Regular expressions option
View
View Menu Options
Project
Project Menu Options
Build
Build Menu Options
Run
Run Menu Options
Tools
Tools Menu Options
Help

30
30
31
31
31
32
32
32
32
33
33
34
34
34
34
36
38
38
38
39
40
40
41
41
42
42
43
43
43
44
44
46
46
47
47
48
48
49
49
50

MikroElektronika

mikroPascal PRO for PIC32

Help Menu Options 50
mikroPascal PRO for PIC32 IDE 51
IDE Overview 51
Code Editor 52
Editor Settings 52
Auto Save 53
Highlighter 53
Spelling 53
Comment Style 53
Code Folding 53
Code Assistant 54
Parameter Assistant 54
Bookmarks 54
Go to Line 54
Column Select Mode 55
Editor Colors 55
Auto Correct 56
Auto Complete (Code Templates) 57
Code Explorer 59
Routine List 60
Project Manager 60
Project Settings 62
Library Manager 63
Managing libraries using Package Manager 64
Routine List 65
Statistics 65
Memory Usage Windows 65
Variables 66
Used RAM Locations 66
SFR Locations 67
ROM Memory Usage 67
ROM Memory Constants 68
Functions 68
Functions Sorted By Name Chart 69
Functions Sorted By Size Chart 69
Functions Sorted By Addresses 70
Function Tree 70
Memory Summary 71
Messages Window 72
Quick Converter 73
Macro Editor 73
Image Preview 74
Toolbars 76
File Toolbar 77

3 MikroElektronika

mikoPascal PRO for PIC32

Edit Toolbar
Advanced Edit Toolbar
Find/Replace Toolbar
Project Toolbar

Build Toolbar

Debug Toolbar
Styles Toolbar

Tools Toolbar

View Toolbar

Layout Toolbar

Help Toolbar

Customizing IDE Layout
Docking Windows
Saving Layout
Auto Hide

Options
Code editor
Tools
Output settings

Integrated Tools
Active Comments Editor
ASCII Chart
EEPROM Editor
Graphic Lcd Bitmap Editor
HID Terminal
Interrupt Assistant
Lcd Custom Character
Seven Segment Editor
UDP Terminal
USART Terminal

Active Comments
New Active Comment
Renaming Active Comment
Deleting Active Comment

Export Project
Jump To Interrupt

Regular Expressions
Introduction
Simple matches
Escape sequences
Character classes
Metacharacters
Metacharacters - Line separators
Metacharacters - Predefined classes
Metacharacters - Word boundaries

77
78
78
79
79
80
80
81
81
82
82

83
83
84
84

85
85
85
86

88
88
89
90
91
92
92
93
94
94
95

96

96
103
104

105
106

107
107
107
107
107
108
108
109
109

MikroElektronika

4

mikroPascal PRO for PIC32

Metacharacters - Iterators
Metacharacters - Alternatives
Metacharacters - Subexpressions
Metacharacters - Backreferences

Keyboard Shortcuts
CHAPTER 3
mikroPascal PRO for PIC32 Command Line Options
CHAPTER 4
mikrolCD (In-Circuit Debugger)
Introduction
mikrolCD Debugger Options
Debugger Options
mikrolCD Debugger Example
mikrolCD Debugger Windows
Debug Windows
Breakpoints Window
Watch Values Window
RAM Window
Stopwatch Window
EEPROM Watch Window
Code Watch Window
CHAPTER 5
Software Simulator Overview
Software Simulator
Software Simulator Debug Windows
Debug Windows
Breakpoints Window
Watch Values Window
RAM Window
Stopwatch Window
EEPROM Watch Window
Code Watch Window
Software Simulator Debugger Options
Debugger Options
CHAPTER 6
mikroPascal PRO for PIC32 Specifics
Predefined Globals and Constants
Predefined project level defines
Accessing Individual Bits
sbit type
at keyword
bit type
Interrupts

109
110
110
110
111
113
113
115
115
115
117
117
118
122
122
122
122
124
124
125
126
127
127
128
129
129
129
129
131
131
132
133
134
134
135
135
136
136
137
138
139
139

140

5

MikroElektronika

mikoPascal PRO for PIC32

Configuring Interrupts 140
Single Vector Mode 140
Multi Vector Mode 140

Interrupt Priorities 141

Interrupts and Register Sets 141
Register Set Selection in Single Vector Mode 141
Interrupts and Register Sets 141

Interrupt Coding Requirements 141

Interrupt Service Routine 141

Function Calls from Interrupt 142

Interrupt Example 143

Linker Directives 144

Directive absolute 144

Directive org 144

Directive orgall 145

Built-in Routines 146

Lo 147

Hi 147

Higher 148

Highest 148

LoWord 149

HiWord 149

Inc 150

Dec 150

Chr 150

Ord 151

SetBit 151

ClearBit 151

TestBit 152

Delay_us 152

Delay_ms 152

VDelay_ms 153

VDelay_advanced_ms 153

Delay_Cyc 153

Delay_Cyc_Long 154

Clock_kHz 154

Clock_MHz 154

Get_Fosc_kHz 155

Get_Fosc_Per_Cyc 155

Reset 155

Clrwdt 156

DisableContextSaving 156

SetFuncCall 157

SetOrg 157

DoGetDateTime 158

GetVersion 158

MikroElektronika 6

mikroPascal PRO for PIC32

KVAO_TO_KVA1 158
KVA1_TO_KVAO 159
KVA_TO_PA 159
PA_TO_KVAO 159
PA_TO_KVA1 159
CPO_GET 160
CPO_SET 160
Enablelnterrupts 160
Disablelnterrupts 161
Code Optimization 163
Constant folding 163
Constant propagation 163

Copy propagation 163

Value numbering 163
"Dead code" ellimination 163
Stack allocation 163

Local vars optimization 163
Better code generation and local optimization 163
Single Static Assignment Optimization 164
Introduction 164
Proper Coding Recommendations 165

Asm code and SSA optimization 166
Debugging Notes 166
Warning Messages Enhancement 166
CHAPTER 7 168
PIC32 Specifics 168
Types Efficiency 169
Nested Calls Limitations 169
Variable, constant and routine alignment 169

Boot Start-up Initialization 169
P1C32 Memory Organization 170
PIC32MX Memory Layout 171
Virtual vs Physical Addresses 172
Memory Type Specifiers 173
code 173

data 173

rx 173

sfr 173
Read Modify Write Problem 174
CHAPTER 8 178
mikroPascal PRO for PIC32 Language Reference 178
Lexical Elements Overview 180
Whitespace 180
Newline Character 180

7 MikroElektronika

mikoPascal PRO for PIC32

Whitespace in Strings

Comments
Nested comments

Tokens
Token Extraction Example

Literals
Integer Literals
Floating Point Literals
Character Literals
String Literals

Keywords

|dentifiers
Case Sensitivity
Uniqueness and Scope
Identifier Examples

Punctuators
Brackets
Parentheses
Comma
Semicolon
Colon
Dot
Program Organization
Organization of Main Unit
Organization of Other Units
Scope and Visibility
Scope
Visibility
Name Spaces
Units
Uses Clause
Main Unit
Other Units
Interface Section
Implementation Section
Variables
External Modifier
Variables and PIC32
Constants
Labels
Functions and Procedures
Functions
Calling a function
Example

180

181
181

182
182

183
183
183
184
184

185

186
186
186
186

187
187
187
187
188
188
188

189
189
190

191
191
191

192

193
193
193
194
194
194

195
195
196

197

198

199
199
199
199

MikroElektronika

8

mikroPascal PRO for PIC32

Procedures
Calling a procedure
Example
Example:
Forward declaration
Functions reentrancy
Types
Type Categories
Simple Types
Derived Types
Arrays
Array Declaration
Constant Arrays
Multi-dimensional Arrays
Strings
String Concatenating
Pointers
Pointers and memory spaces
Function Pointers
Example:
@ Operator
Pointer Arithmetic
Assignment and Comparison
Pointer Addition
Pointer Subtraction
Records
Accessing Fields
Types Conversions
Implicit Conversion
Promotion
Clipping
Explicit Conversion
Conversions Examples
Type Specifier
Type Qualifiers
Qualifier const
Qualifier volatile

Operators

Operators Precedence and Associativity

Arithmetic Operators
Division by Zero
Unary Arithmetic Operators

Relational Operators

200
200
200
201
201
202

202
202

203

203

204
204
204
204

205
205

206
206
207
207

209

209
209
210
211

212
212

213
213
213
214

214
214

215

216
216
216

216

217

217
217
218

218

9

MikroElektronika

mikoPascal PRO for PIC32

Relational Operators in Expressions
Bitwise Operators
Bitwise Operators Overview
Logical Operations on Bit Level
Unsigned and Conversions
Signed and Conversions
Bitwise Shift Operators
Boolean Operators
Unary Operators
Unary Arithmetic Operator
Unary Bitwise Operator
Address and Indirection Operator
Sizeof Operator
Sizeof Applied to Expression
Sizeof Applied to Type
Expressions
Expression Evaluation
General Rule
Left side exception
Conditional expressions
Explicit Typecasting
Statements
Assignment Statements
Compound Statements (Blocks)
Conditional Statements
If Statement
Nested if statements
Case Statement
Nested Case statement
Iteration Statements
For Statement
Endless Loop
While Statement
Repeat Statement
Jump Statements
asm Statement
Accessing variables
Asm code and SSA optimization

With Statement
Directives

Compiler Directives
Directives $DEFINE and $SUNDEFINE
Directives $IFDEF, $IFNDEF, $ELSE and $ENDIF

218
219
219
219
220
220
220
221
221
221
221
221
222
222
222
223
223
223
223
224
224
224
225
225
225
226
226
227
227
228
228
228
229
229
230
230
230
231
232
232
232
233
233

MikroElektronika

10

mikroPascal PRO for PIC32

Include Directive $I

Linker Directives
Directive absolute
Directive org
Directive orgall

CHAPTER 9

mikroPascal PRO for PIC32 Libraries
Hardware Libraries

Miscellaneous Libraries

Hardware Libraries

ADC Library

Library Routines
ADC1_lInit
ADC1_Init_Advanced
ADC1_Get_Sample
ADC1_Read

Library Example

CANSPI Library
Library Dependency Tree
External dependencies of CANSPI Library
Library Routines
CANSPISetOperationMode
CANSPIGetOperationMode
CANSPIInit
CANSPISetBaudRate
CANSPISetMask
CANSPISetFilter
CANSPIRead
CANSPIWrite
CANSPI Constants
CANSPI_OP_MODE Constants
CANSPI_CONFIG_FLAGS Constants
CANSPI_TX MSG_FLAGS Constants
CANSPI_RX _MSG_FLAGS Constants
CANSPI_MASK Constants
CANSPI_FILTER Constants
Library Example
HW Connection

Compact Flash Library
Library Dependency Tree

External dependencies of Compact Flash Library

Library Routines
Cf_Init
Cf_Detect
Cf_Enable

234

234
234
235
235

236
236
237
237
238

239
239
239
240
240
241
242

243
243
243
244
244
245
245
247
248
249
250
251
251
251
252
253
253
254
254
255
258

259
259
260
261
262
263
263

11

MikroElektronika

mikoPascal PRO for PIC32

Cf_Disable 263
Cf_Read_Init 264
Cf_Read_Byte 264
Cf_Write_Init 264
Cf_Write_Byte 265
Cf _Read_Sector 265
Cf_Write_Sector 265
Cf_Fat_Init 266
Cf_Fat_QuickFormat 266
Cf_Fat_Assign 267
Cf_Fat_Reset 268
Cf_Fat_Read 268
Cf_Fat_Rewrite 269
Cf_Fat_Append 269
Cf_Fat_Delete 269
Cf_Fat_Write 270
Cf_Fat_Set File Date 270
Cf_Fat_Get_File_Date 271
Cf_Fat_Get_File_Date Modified 271
Cf_Fat_Get_File_Size 272
Cf_Fat_Get_Swap_File 272
Library Example 274
HW Connection 279
Epson S1D13700 Graphic Lcd Library 280
External dependencies of the Epson S1D13700 Graphic Lcd Library 280
Library Routines 281
S1D13700_Init 282
S1D13700_Write_ Command 283
S1D13700_Write_Parameter 284
S1D13700_Read_Parameter 284
S1D13700_Fill 284
S1D13700_GrFill 285
S1D13700_TxtFill 285
S1D13700_Display_GrLayer 285
S1D13700_Display_TxtLayer 286
S1D13700_Set_Cursor 286
S1D13700_Display_Cursor 287
S1D13700_Write_Char 287
S1D13700_Write_Text 288
S1D13700_Dot 288
S1D13700_Line 289
S1D13700_H_Line 289
S1D13700_V_Line 290
S1D13700_Rectangle 290
S1D13700_Box 291
S1D13700_Rectangle_Round_Edges 291
S1D13700_Rectangle_Round_Edges_Fill 292

MikroElektronika 12

mikroPascal PRO for PIC32

S1D13700_Circle
S1D13700_Circle_Fill
S1D13700_Image
S1D13700_Partiallmage

Flash Memory Library

Library Routines
Flash_Write_Word
Flash_Write_ Row
Flash_Erase Page

Graphic Lcd Library

Library Dependency Tree

External dependencies of Graphic Lcd Library

Library Routines
Glcd_Init
Glcd_Set_Side
Glcd_Set X
Glcd_Set_Page
Glcd_Read_Data
Glcd_Write_Data
Glcd_Fill
Glcd_Dot
Glcd_Line
Glcd_V _Line
Glcd_H_Line
Glcd_Rectangle
Glcd_Rectangle_Round_Edges

Glcd_Rectangle_Round_Edges_Fill

Glcd_Box
Glcd_Circle
Glcd_Circle_Fill
Glcd_Set_Font
Glcd_Write_Char
Glcd_Write_Text
Glcd_Image
Glcd_Partiallmage

I2C Library

Library Routines
12Cx_Init
12Cx_Init_Advanced
12Cx_Start
I2Cx_Restart
12Cx_Is_Idle
I2Cx_Read
12Cx_Write
12Cx_Stop

Library Example

292
293
293
294

294
294
295
295
295

296
296
297
2908
2908
300
300
300
301
301
302
302
302
303
303
304
304
305
305
306
306
307
308
308
309
309

310
310
310
311
311
312
312
313
313
314
314

13

MikroElektronika

mikoPascal PRO for PIC32

Keypad Library 316
External dependencies of Keypad Library 316
Library Routines 316
Keypad_Init 316
Keypad_Key Press 317
Keypad_Key_Click 317
Library Example 318
HW Connection 319

Lcd Library 320
Library Dependency Tree 320
Keypad_Key_Click 320
Library Routines 320
Led_Init 321
Lcd Out 322
Lcd Out Cp 322
Led_Chr 322
Lcd Chr Cp 323
Lcd_Cmd 323
Available Lcd Commands 323
Library Example 324

Memory Manager Library 326
Library Routines 326
Heap_Init 326
GetMem 326
FreeMem 327
MM_LargestFreeMemBlock 327
MM _ TotalFreeMemSize 327

Multi Media Card Library 328
Secure Digital Card 328
Secure Digital High Capacity Card 328
Library Dependency Tree 329
External dependencies of MMC Library 329
Library Routines 329
Mmc_Init 330
Mmc_Read_Sector 331
Mmc_Write_Sector 331
Mmc_Read_Cid 332
Mmc_Read_Csd 332
Mmc_Fat_Init 333
Mmc_Fat_QuickFormat 334
Mmc_Fat_Assign 335
Mmc_Fat_Reset 336
Mmc_Fat Read 336
Mmc_Fat_Rewrite 337
Mmc_Fat_Append 337
Mmc_Fat_Delete 337

MikroElektronika 14

mikroPascal PRO for PIC32

Mmc_Fat_Write 338
Mmc_Fat_Set File Date 338
Mmc_Fat_Get_File_Date 339
Mmc_Fat_Get_File_Date Modified 340
Mmc_Fat_Get_File_Size 340
Mmc_Fat_Get Swap_File 341
Library Example 342
HW Connection 347
OneWire Library 347
Library Routines 347
Ow_Reset 348
Ow_Read 348
Ow_Write 348
Port Expander Library 349
Library Dependency Tree 349
External dependencies of Port Expander Library 349
Library Routines 349
Expander_Init 350
Expander_Init_Advanced 351
Expander_Read_Byte 352
Expander_Write_Byte 352
Expander_Read_PortA 352
Expander_Read_PortB 353
Expander_Read_PortAB 353
Expander_Write_PortA 354
Expander_Write_PortB 354
Expander_Write_PortAB 355
Expander_Set DirectionPortA 355
Expander_Set_DirectionPortB 356
Expander_Set DirectionPortAB 356
Expander_Set PullUpsPortA 356
Expander_Set PullUpsPortB 357
Expander_Set PullUpsPortAB 357
Library Example 358
HW Connection 359
PS/2 Library 360
External dependencies of PS/2 Library 360
Library Routines 360
Ps2_Config 361
Ps2_Key Read 361
Special Function Keys 362
Library Example 363
HW Connection 364
PWM Library 364
Library Routines 364
PWM_Init 365

15 MikroElektronika

mikoPascal PRO for PIC32

PWM_Init_Advanced
PWM_Set_Duty
PWM_Start
PWM_Stop

Library Example

HW Connection

RS-485 Library
Library Dependency Tree
External dependencies of RS-485 Library
Library Routines
RS485Master_Init
RS485Master_Receive
RS485Master_Send
RS485Slave_Init
RS485Slave_Receive
RS485Slave_Send
Library Example
HW Connection
Message format and CRC calculations

Software I12C Library
External dependencies of Software I°C Library
Library Routines
Soft_12C_Init
Soft_12C_Start
Soft 12C_Read
Soft_12C_Write
Soft_12C_Stop
Soft_12C_Break
Library Example

Software SPI Library
External dependencies of Software SPI Library
Library Routines
Soft_SPI_Init
Soft_SPI_Read
Soft_ SPI_Write
Library Example

Software UART Library
Library Routines
Soft_UART_Init
Soft UART_Read
Soft UART_Write
Soft UART_Break
Library Example

Sound Library
Library Routines
Sound_Init

365
366
366
366
367
368

369
369
369
370
370
371
371
372
373
373
374
377
378

379
379
379
380
380
381
381
381
382
383

385
385
385
386
387
387
387

389
389
389
390
390
391
392

393
393
393

MikroElektronika

16

mikroPascal PRO for PIC32

Sound_Play 393
Library Example 394
HW Connection 396
SPI Library 397
Library Routines 397
SPIx_Init 398
SPIx_Init_Advanced 399
SPIx_Read 401
SPIx_Write 401
SPI_Set_Active 402
Library Example 402
HW Connection 404
SPI Ethernet Library 405
Library Dependency Tree 405
External dependencies of SPI Ethernet Library 406
Library Routines 407
SPI_Ethernet_Init 407
SPI_Ethernet_Enable 409
SPI_Ethernet_Disable 410
SPI_Ethernet_doPacket 411
SPI_Ethernet_putByte 411
SPI_Ethernet_putBytes 412
SPI_Ethernet_putConstBytes 412
SPI_Ethernet_putString 413
SPI_Ethernet_putConstString 413
SPI_Ethernet_getByte 413
SPI_Ethernet_getBytes 414
SPI_Ethernet_UserTCP 414
SPI_Ethernet_UserUDP 415
SPI_Ethernet_setUserHandlers 415
SPI_Ethernet_getlpAddress 416
Ethernet_getGwlpAddress 416
SPI_Ethernet_getDnslpAddress 416
SPI_Ethernet_getlpMask 417
SPI_Ethernet_confNetwork 417
SPI_Ethernet_arpResolve 418
SPI_Ethernet_sendUDP 418
SPI_Ethernet_dnsResolve 419
SPI_Ethernet_initDHCP 420
SPI_Ethernet_ doDHCPLeaseTime 420
SPI_Ethernet_renewDHCP 421
Library Example 422
HW Connection 429
SPI Ethernet ENC24J600 Library 430
Library Dependency Tree 430
External dependencies of SPI Ethernet ENC24J600 Library 431

17 MikroElektronika

mikoPascal PRO for PIC32

Library Routines 432
SPI_Ethernet_24j600_Init 433
SPI_Ethernet_24j600_Enable 435
SPI_Ethernet_24j600_Disable 436
SPI_Ethernet_24j600_doPacket 437
SPI_Ethernet_24j600_putByte 437
SPI_Ethernet_24j600_putBytes 438
SPI_Ethernet_24j600_putConstBytes 438
SPI_Ethernet_24j600_putString 439
SPI_Ethernet_24j600_putConstString 439
SPI_Ethernet_24j600_getByte 439
SPI_Ethernet_24j600_getBytes 440
SPI_Ethernet_24j600_UserTCP 440
SPI_Ethernet_24j600_UserUDP 441
SPI_Ethernet_24j600_getlpAddress 441
SPI_Ethernet_24j600_getGwlpAddress 442
SPI_Ethernet_24j600_getDnslpAddress 442
SPI_Ethernet_24j600_getlpMask 443
SPI_Ethernet_24j600_confNetwork 443
SPI_Ethernet_24j600_arpResolve 444
SPI_Ethernet_24j600_sendUDP 444
SPI_Ethernet_24j600_dnsResolve 445
SPI_Ethernet_24j600_initDHCP 446
SPI_Ethernet_24j600_doDHCPLeaseTime 447
SPI_Ethernet_24j600_renewDHCP 447
SPI Graphic Lcd Library 448
Library Dependency Tree 448
External dependencies of SPI Lcd Library 448
Library Routines 448
SPI_Glcd_Init 449
SPI_Glcd_Set_Side 450
SPI_Glcd_Set_Page 450
SPI_Glcd_Set_X 450
SPI_Glcd_Read_Data 451
SPI_Glcd_Write_Data 451
SPI_Glcd_Fill 452
SPI_Glcd_Dot 452
SPI_Glcd_Line 453
SPI_Glcd_V_Line 453
SPI_Glcd_H_Line 454
SPI_Glcd_Rectangle 454
SPI_Glcd_Rectangle_Round_Edges 455
SPI_Glcd_Rectangle_Round_Edges_Fill 455
SPI_Glcd_Box 456
SPI_Glcd_Circle 456
SPI_Glcd_Circle_Flli 457
SPI_Glcd_Set Font 458

MikroElektronika 18

mikroPascal PRO for PIC32

SPI_Glcd_Write_Char 459
SPI_Glcd_Write_Text 459
SPI_Glcd_Image 460
SPI_Glcd_Partiallmage 460
Library Example 461
HW Connection 463
SPI Lcd Library 464
Library Dependency Tree 464
External dependencies of SPI Lcd Library 464
Library Routines 464
SPI_Lcd_Config 465
SPI_Lcd_Out 465
SPI_Lcd Out Cp 466
SPI_Lcd_Chr 466
SPI_Lcd_Chr_Cp 466
SPI_Lcd_Cmd 467
Available SPI Lcd Commands 467
Library Example 468
Default Pin Configuration 468
SPI Lcd8 (8-bit interface) Library 470
Library Dependency Tree 470
External dependencies of SPI Lcd Library 470
Library Routines 470
SPI_Lcd8 Config 471
SPI_Lcd8_ Out 472
SPI_Lcd8 Out_Cp 472
SPI_Lcd8_Chr 472
SPI_Lcd8 Chr_Cp 473
SPI_Lcd8 Cmd 473
Available SPI Lcd8 Commands 474
Library Example 474
SPI T6963C Graphic Lcd Library 477
Library Dependency Tree 477
External dependencies of SPI T6963C Graphic Lcd Library 477
Library Routines 478
SPI_T6963C_config 479
SPI_T6963C_writeData 480
SPI_T6963C_writeCommand 480
SPI_T6963C_setPtr 481
SPI_T6963C_waitReady 481
SPI_T6963C_fill 481
SPI_T6963C_dot 482
SPI_T6963C_write_char 482
SPI_T6963C_write_text 483
SPI_T6963C_line 484
SPI_T6963C_rectangle 484

19 MikroElektronika

mikoPascal PRO for PIC32

SPI_T6963C_rectangle_round_edges 485
SPI_T6963C_rectangle_round_edges_fill 485
SPI_T6963C_box 486
SPI_T6963C_circle 486
SPI_T6963C_circle_fill 486
SPI_T6963C_image 487
SPI_T6963C_Partiallmage 487
SPI_T6963C_sprite 488
SPI_T6963C_set_cursor 488
SPI_T6963C_clearBit 488
SPI_T6963C_setBit 489
SPI_T6963C_negBit 489
SPI_T6963C_displayGrPanel 489
SPI_T6963C_displayTxtPanel 490
SPI_T6963C_setGrPanel 490
SPI_T6963C_setTxtPanel 490
SPI_T6963C_panelFill 491
SPI1_T6963C_grFill 491
SPI_T6963C_txtFill 491
SPI_T6963C_cursor_height 492
SPI_T6963C_graphics 492
SPI_T6963C_text 492
SPI_T6963C_cursor 493
SPI_T6963C_cursor_blink 493
Library Example 493
HW Connection 499
T6963C Graphic Lcd Library 500
Library Dependency Tree 500
External dependencies of T6963C Graphic Lcd Library 501
Library Routines 502
T6963C _init 503
T6963C_writeData 504
T6963C_writeCommand 505
T6963C_setPtr 505
T6963C_waitReady 505
T6963C _fill 506
T6963C_dot 506
T6963C_write_char 507
T6963C_write_text 508
T6963C_line 508
T6963C_rectangle 509
T6963C_rectangle_round_edges 509
T6963C_rectangle_round_edges_fill 510
T6963C_box 510
T6963C_circle 510
T6963C_circle_fill 511
T6963C_image 511

MikroElektronika 20

mikroPascal PRO for PIC32

T6963C_Partiallmage
T6963C_sprite
T6963C_set_cursor
T6963C_displayGrPanel
T6963C_displayTxtPanel
T6963C_setGrPanel
T6963C_setTxtPanel
T6963C_panelFill
T6963C_grFill
T6963C_txtFill
T6963C_cursor_height
T6963C_graphics
T6963C _text
T6963C_cursor
T6963C_cursor_blink
Library Example

HW Connection

TFT Library

External dependencies of TFT Library

Library Routines
TFT_Init
TFT_Set_Index
TFT_Write_ Command
TFT_Write_Data
TFT_Set Active
TFT_Set Font
TFT_Write_Char
TFT_Write_Text
TFT_Fill_Screen
TFT_Dot
TFT_Set Pen
TFT_Set Brush
TFT_Line
TFT_H_Line
TFT_V_Line
TFT_Rectangle

TFT_Rectangle_Round_Edges

TFT_Circle
TFT_Image
TFT_Partial_Image
TFT_Image_Jpeg
TFT_RGBToColor16bit
TFT_Color16bitToRGB
HW Connection

Touch Panel Library
Library Dependency Tree

512
512
513
513
513
514
514
514
515
515
515
516
516
516
517
517
524

525
525
526
527
528
528
528
529
530
531
531
532
533
534
535
537
538
538
538
539
539
539
540
540
541
541
542

543
543

21

MikroElektronika

mikoPascal PRO for PIC32

External dependencies of Touch Panel Library
Library Routines

TP_Init

TP_Set ADC_Threshold

TP_Press_Detect

TP_Get_Coordinates
TP_Calibrate_Bottom_Left
TP_Calibrate_Upper_Right
TP_Get_Calibration_Consts

TP_Set Calibration_Consts

Touch Panel TFT Library
Library Dependency Tree
External dependencies of Touch Panel TFT Library
Library Routines
TP_TFT_lInit
TP_TFT_Set ADC_Threshold
TP_TFT_Press_Detect
TP_TFT_Get_Coordinates
TP_TFT_Calibrate_Min
TP_TFT_Calibrate_Max
TP_TFT_Get_Calibration_Consts
TP_TFT_Set_Calibration_Consts
HW Connection

UART Library
Library Routines
UARTxX_Init
UARTXx_Init_Advanced
UARTx_Data_Ready
UARTx_Tx_Idle
UARTx_Read
UARTx_Read_Text
UARTX_Write
UARTXx_Write_Text
UART_Set_Active
Library Example
HW Connection

USB Library
USB HID Class
Descriptor File
Library Routines
HID_Enable
HID_Read
HID_Write
HID_Disable
USB_ Interrupt_Proc
USB_Polling_Proc

543
543
544
544
545
546
546
546
547
547

548
548
548
548
549
549
550
551
551
551
552
5562
553

554
554
555
556
557
557
558
559
560
560
561
562
563

564
564
564
564
565
565
565
566
566
567

MikroElektronika

22

mikroPascal PRO for PIC32

Gen_Enable
Gen_Read
Gen_Write
Library Example
HW Connection

Miscellaneous Libraries
Button Library

Library Routines
Button
Button

C Type Library

Library Functions
isalnum
isalpha
iscntrl
isdigit
isgraph
islower
ispunct
isspace
isupper
isxdigit
toupper
tolower

Conversions Library

Library Dependency Tree
Library Routines
ByteToStr

ShortToStr

WordToStr

IntToStr

LongToStr
LongWordToStr
FloatToStr
WordToStrWithZeros
IntToStrWithZeros
LongWordToStrWithZeros
LongIntToStrWithZeros
ByteToHex
ShortToHex
WordToHex

IntToHex
LongWordToHex
LongIntToHex

StrTolnt

StrToWord

567
568
568
569
569

570

570
570
570
571

571
571
571
572
572
572
572
572
573
573
573
573
573
573

574
574
574
575
575
576
576
577
577
578
578
579
579
580
580
581
581
582
582
582
583
583

23

MikroElektronika

mikoPascal PRO for PIC32

Bcd2Dec 583
Dec2Bcd 584
Bcd2Dec16 584
Dec2Bcd16 584
Setjmp Library 585
Library Routines 585
Setjmp 585
Longjmp 585
Library Example 586
Sprint Library 587
Library Dependency Tree 587
Functions 587
memchr 588
memcmp 588
memcpy 589
memmove 589
memset 589
strcat 590
strcat2 590
strchr 590
strcmp 591
strepy 591
strlen 591
strncat 591
strncpy 592
strspn 592
strncmp 592
strstr 593
strcspn 593
strpbrk 593
strrchr 593
[trim 594
rtrim 594
strappendpre 594
strappendsuf 594
length 594
Time Library 595
Library Routines 595
Time_dateToEpoch 595
Time_epochToDate 596
Time_dateDiff 596
Library Example 596
TimeStruct type definition 597
Trigon Library 598
Library Functions 598
acos 598

MikroElektronika 24

mikroPascal PRO for PIC32

asin
atan
atan2
ceil
cos
cosh
eval_poly
exp
fabs
floor
frexp
Idexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh
Trigonometry Library
Library Routines
sinE3
cosE3
CHAPTER 10
Tutorials
Managing Project
Projects
New Project
New Project Wizard Steps
Customizing Projects
Managing Project Group
Add/Remove Files from Project
Project Level Defines:
Source Files
Managing Source Files
Creating new source file
Opening an existing file
Printing an open file
Saving file
Saving file under a different name
Closing file
Search Paths
Paths for Source Files (.mpas)

598
599
599
599
599
599
599
600
600
600
600
600
600
600
601
601
601
601
601
601
601
602
602
602
602
603
603

603
603

604
604

608
608

608
609

610

610
610
610
610
610
611
611
611
612

25

MikroElektronika

mikoPascal PRO for PIC32

Edit Project 613
Clean Project Folder 614
Compilation 615
Output Files 615
Assembly View 615
Creating New Library 616
Multiple Library Versions 616
Frequently Asked Questions 617
Can | use your compilers and programmer on Windows Vista (Windows 7) ? 617
| am getting “Access is denied” error in Vista, how to solve this problem ? 617
What are differences between mikroC PRO, mikroPascal PRO and mikroBasic PRO compilers ?
Why do they have different prices ? 617
Why do your PIC compilers don’t support 12F508 and some similar chips ? 617
What are limitations of demo versions of mikroElektronika’s compilers ? 617
Why do | still get demo limit error when | purchased and installed license key ? 617
I have bought license for the older version, do | have to pay license for the new version of the com-
piler ? 618
Do your compilers work on Windows Vista (Windows 7) ? 618
What does this function/procedure/routine do ? 618
| try to compile one of the provided examples and nothing happens, what is the problem? 618
Can | get your library sources ? | need to provide all sources with my project. 618
Can | use code | developed in your compilers in commercial purposes ? Are there some limitations
? 618
Why does an example provided with your compilers doesn’t work ? 618
Your example works if | use the same MCU you did, but how to make it work for another MCU 7618
I need this project finished, can you help me ? 619

Do you have some discount on your compilers/development systems for students/professors ? 619
| have a question about your compilers which is not listed here. Where can | find an answer ? 619

MikroElektronika 26

mikroPascal PRO for PIC32

27 MikroElektronika

mikoPascal PRO for PIC32

CHAPTER 1

INTRODUCTION

The mikroPascal PRO for PIC32 is a powerful, feature-rich development tool for PIC32 microcontrollers. It is designed
to provide the programmer with the easiest possible solution to developing applications for embedded systems, without
compromising performance or control.

iii%i%-ﬁ

i

-
“
]
o
-
s

mikroPascal PRO for PIC32 IDE

MikroElektronika 28

mikroPascal PRO for PIC32

Introduction to mikroPascal PRO for PIC32

The PIC32 is a 32-bit family of general purpose microcontrollers. This is the Microchip’s first inherent 32-bit (data)
microcontroller family. It builds upon the MIPS M4K 32-bit core, offering high-performance hardware multiply/divide
unit, programmable user and kernel memory partition through an unified 4GB virtual memory space, with powerful
peripherals to address a wide range of applications.

Having a wide range of application, being prized for its efficiency, PIC32 MCUs are a natural choice for developing
embedded systems. mikroPascal PRO for PIC32 provides a successful match featuring highly advanced IDE, ANSI
compliant compiler, broad set of hardware libraries, comprehensive documentation, and plenty of ready-to-run
examples.

Features
mikroPascal PRO for PIC32 allows you to quickly develop and deploy complex applications:

- Write your source code using the built-in Code Editor (Code and Parameter Assistants, Code Folding,
Syntax Highlighting, Auto Correct, Code Templates, and more.)

- Use included mikroPascal PRO for PIC32 libraries to dramatically speed up the development: data
acquisition, memory, displays, conversions, communication etc.

- Monitor your program structure, variables, and functions in the Code Explorer.

- Generate commented, human-readable assembly, and standard HEX compatible with all programmers.

- Use the integrated mikrolCD (In-Circuit Debugger) Real-Time debugging tool to monitor program execution
on the hardware level.

- Inspect program flow and debug executable logic with the integrated Software Simulator.

- Use Single Static Assignment optimization to shrink your code to even smaller size.

- Get detailed reports and graphs: RAM and ROM map, code statistics, assembly listing, calling tree,
and more.

- Active Comments enable you to make your comments alive and interactive.

- mikroPascal PRO for PIC32 provides plenty of examples to expand, develop, and use as building bricks in
your projects. Copy them entirely if you deem fit — that's why we included them with the compiler.

Where to Start

- In case that you’re a beginner in programming the PIC32 microcontrollers, read carefully the PIC32
Specifics chapter. It might give you some useful pointers on the PIC32 constraints, code portability, and
good programming practices.

- If you are experienced in Pascal programming, you will probably want to consult mikroPascal PRO
for PIC32 Specifics first. For language issues, you can always refer to the comprehensive Language
Reference. A complete list of included libraries is available at mikroPascal PRO for PIC32 Libraries.

- If you are not very experienced in Pascal programming, don’t panic! mikroPascal PRO for PIC32 provides
plenty of examples making it easy for you to go quickly through it. We suggest that you first consult
Projects and Source Files first, and then start browsing the examples that you’re the most interested in.

Copyright (c) 2002-2010 mikroElektronika. All rights reserved.
What do you think about this topic ? Send us feedback!

29 MikroElektronika

mikoPascal PRO for PIC32

Software License Agreement
mikroElektronika Associates License Statement and Limited Warranty

IMPORTANT - READ CAREFULLY

This license statement and limited warranty constitute a legal agreement (“License Agreement”) between you (either as
an individual or a single entity) and mikroElektronika (“mikroElektronika Associates”) for software product (“Software”)
identified above, including any software, media, and accompanying on-line or printed documentation.

BY INSTALLING, COPYING, OR OTHERWISE USING SOFTWARE, YOU AGREE TO BE BOUND BY ALL TERMS
AND CONDITIONS OF THE LICENSE AGREEMENT.

Upon your acceptance of the terms and conditions of the License Agreement, mikroElektronika Associates grants you
the right to use Software in a way provided below.

This Software is owned by mikroElektronika Associates and is protected by copyright law and international copyright
treaty. Therefore, you must treat this Software like any other copyright material (e.g., a book).

You may transfer Software and documentation on a permanent basis provided. You retain no copies and the recipient
agrees to the terms of the License Agreement. Except as provided in the License Agreement, you may not transfer,
rent, lease, lend, copy, modify, translate, sublicense, time-share or electronically transmit or receive Software, media
or documentation. You acknowledge that Software in the source code form remains a confidential trade secret of
mikroElektronika Associates and therefore you agree not to modify Software or attempt to reverse engineer, decompile,
or disassemble it, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding
this limitation.

If you have purchased an upgrade version of Software, it constitutes a single product with the mikroElektronika
Associates software that you upgraded. You may use the upgrade version of Software only in accordance with the
License Agreement.

LIMITED WARRANTY

Respectfully excepting the Redistributables, which are provided “as is”, without warranty of any kind, mikroElektronika
Associates warrants that Software, once updated and properly used, will perform substantially in accordance with the
accompanying documentation, and Software media will be free from defects in materials and workmanship, for a period
of ninety (90) days from the date of receipt. Any implied warranties on Software are limited to ninety (90) days.

mikroElektronika Associates’ and its suppliers’ entire liability and your exclusive remedy shall be, at mikroElektronika
Associates’ option, either (a) return of the price paid, or (b) repair or replacement of Software that does not meet
mikroElektronika Associates’ Limited Warranty and which is returned to mikroElektronika Associates with a copy of
your receipt. DO NOT RETURN ANY PRODUCT UNTIL YOU HAVE CALLED MIKROELEKTRONIKA ASSOCIATES
FIRST AND OBTAINED A RETURN AUTHORIZATION NUMBER. This Limited Warranty is void if failure of Software
has resulted from an accident, abuse, or misapplication. Any replacement of Software will be warranted for the rest of
the original warranty period or thirty (30) days, whichever is longer.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, MIKROELEKTRONIKA ASSOCIATES AND ITS
SUPPLIERS DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESSED OR IMPLIED,
INCLUDED, BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, TITLE, AND NON-INFRINGEMENT, WITH REGARD TO SOFTWARE, AND THE PROVISION OF OR
FAILURE TO PROVIDE SUPPORT SERVICES.

MikroElektronika 30

mikroPascal PRO for PIC32

IN NO EVENT SHALL MIKROELEKTRONIKA ASSOCIATES OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS OF BUSINESS PROFITS AND BUSINESS INFORMATION, BUSINESS INTERRUPTION, OR
ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE PRODUCT
OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF MIKROELEKTRONIKA
ASSOCIATESHASBEENADVISED OF THEPOSSIBILITY OF SUCHDAMAGES.INANY CASE, MIKROELEKTRONIKA
ASSOCIATES’ ENTIRE LIABILITY UNDER ANY PROVISION OF THIS LICENSE AGREEMENT SHALL BE LIMITED
TO THE AMOUNT ACTUALLY PAID BY YOU FOR SOFTWARE PRODUCT PROVIDED, HOWEVER, IF YOU HAVE
ENTERED INTOAMIKROELEKTRONIKAASSOCIATES SUPPORT SERVICESAGREEMENT, MIKROELEKTRONIKA
ASSOCIATES’ ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF
THAT AGREEMENT.

HIGH RISK ACTIVITIES

Software is not fault-tolerant and is not designed, manufactured or intended for use or resale as on-line control
equipment in hazardous environments requiring fail-safe performance, such as in the operation of nuclear facilities,
aircraft navigation or communication systems, air traffic control, direct life support machines, or weapons systems, in
which the failure of Software could lead directly to death, personal injury, or severe physical or environmental damage
(“High Risk Activities”). mikroElektronika Associates and its suppliers specifically disclaim any expressed or implied
warranty of fitness for High Risk Activities.

GENERAL PROVISIONS

This statement may only be modified in writing signed by you and an authorised officer of mikroElektronika Associates.
If any provision of this statement is found void or unenforceable, the remainder will remain valid and enforceable
according to its terms. If any remedy provided is determined to have failed for its essential purpose, all limitations of
liability and exclusions of damages set forth in the Limited Warranty shall remain in effect.

This statement gives you specific legal rights; you may have others, which vary, from country to country. mikroElektronika
Associates reserves all rights not specifically granted in this statement.

mikroElektronika
Visegradska 1A,
11000 Belgrade,
Europe.

Phone: + 381 11 36 28 830
Fax: +381 11 36 28 831
Web: www.mikroe.com
E-mail: office@mikroe.com

31 MikroElektronika

mikoPascal PRO for PIC32

Technical Support

The latest software can be downloaded free of charge via Internet (you might want to bookmark the page so you could
check news, patches, and upgrades later on): http://www.pic32compilers.com/ .

In case you encounter any problem, you are welcome to our support forums at www.mikroe.com/forum/. Here, you
may also find helpful information, hardware tips, and practical code snippets. Your comments and suggestions on
future development of the mikroPascal PRO for PIC32 are always appreciated — feel free to drop a note or two on our
Wishlist.

In our Knowledge Base www.mikroe.com/en/kb/ you can find the answers to Frequently Asked Questions and solutions
to known problems. If you can not find the solution to your problem in Knowledge Base then report it to Support Desk
www.mikroe.com/en/support/. In this way, we can record and track down bugs more efficiently, which is in our mutual
interest. We respond to every bug report and question in a suitable manner, ever improving our technical support.

How to Register

The latest version of the mikroPascal PRO for PIC32 is always available for downloading from our website. It is a
fully functional software with the mikrolCD(in-circuit Debugger), all the libraries, examples, and comprehensive help
included.

The only limitation of the free version is that it cannot generate hex output over 2K of program words. Although it might
sound restrictive, this margin allows you to develop practical, working applications with no thinking of demo limit. If you

intend to develop really complex projects in the mikroPascal PRO for PIC32, then you should consider the possibility
of purchasing the license key.

Who Gets the License Key
Buyers of the mikroPascal PRO for PIC32 are entitled to the license key. After you have completed the payment

procedure, you have an option of registering your mikroPascal PRO for PIC32. In this way you can generate hex output
without any limitations.

How to Get License Key
After you have completed the payment procedure, start the program. Select Help > How to Register from the drop-
down menu or click the How To Register Icon ‘_,-) .

You can choose between two registering methods, | work online or | work offline, based on your current internet
connection and click Request license key now button:

MikroElektronika 32

mikroPascal PRO for PIC32

How to register

Choose registration methad

(& work online. Choose this option iF you are connected to
nternet, You will be directed to a web page which will help wou
o send the license key request. This is the Fastest way of
btaining the license key, it takes minukes to get it in your
ailbox, Recommended.

) 1 work offline. Choose this option if vou are not connected ko
Internet. You will be guided to Fill in the registration Form which
wau can e-mail when you get online. This is a slower way of
getting the license key and it is intended For offline computers,

Request licenss

Cancel
key now

If you choose | work online registering method, following page will be opened in your default browser:

) MikroElektronika ki e
E DEVELOPMENT TOOLS | COMPILERS | BOOKS Emalli office@mikros.cormn

Home | Development Tools Compilers Accessory Boards | Special Offers Easy Buy | Publications Support | Projects | Download

Software Activation

In order to get activation key please fill in required flelds. Upon receiving and verifying your request, we will send the licanse key to the e-mail address you specified in the form.

Product

Name*: John Smith

Address:
Invoice: Ifyou do not specify 200 Number of invodce number
then thie license key request must be processed
AC0 Mumber rrEnally which can 1ake longer timea

Email*: |smith@@example.com

Re-enter email*: | |smithi@example com

Comparny:
Product I0:
Comment
Distributor* : MikroElektronika v
Trpe the two words:
progrant 7 44
Submit
Related Links: Producks Mews Forums Distril About Mikr i Legal I ation and Privacy Policy Product Archive Contact Us

Copyright € 1558-2010. MikroElek tronika, Al rights reserved. Al trade and/or 58 rvices marks mentioned ane the property of their respective owners.

33

MikroElektronika

mikoPascal PRO for PIC32

Fill out the registration form, select your distributor, and click the Submit button.

If you choose | work offline registering method, following window will be opened:

P How To Register

Step 1. Fill in the form below. Please, make sure yvou fill in all required fields.

Step 2. Make sure that you provided a valid email address in the "EMAIL" edit box. This email will be used for
sending you the activation key.

Step 3. Make sure you select a correct distributar which will make the registration process faster. If your
distributor is not on the list then select "Other" and type in distributor's email address in the box below.

Step 4. Press the SEMD button to send key request, & default ernail client will open with ready-to-send message.
Mote: If email client does not open, you may copy text of the message and paste it manually into a new email
message before sending it to your distributor's email,

NAME* John Smith
ADDRESS Enter your address
INVOICE Enter inwoice number if available

2C0 Number Enter 2CheckOut Order Mumber or invoice number if available (10 characters)

|
|
|
|
| E-MAIL* jsmithi@example .com
|
|
|
|
|

E-MAIL* jsmith@esxample.cam

COMPARY Enter company nanme

FRODUCT ID 3F47-546774-FFEATI-654DF

COMMENTS: Enter comments on your arder
DISTRIBUTOR™ | rjkroElsktronika key@mikr oe.com e
* Required fields
MName:
Johin Smith
Address:

MInvoice number:

Copy to clipboard [E4] sEND Cancal

Fill out the registration form, select your distributor, and click the Submit button.

This will start your e-mail client with message ready for sending. Review the information you have entered, and add the
comment if you deem it necessary. Please, do not modify the subject line.

Upon receiving and verifying your request, we will send the license key to the e-mail address you specified in the
form.

After Receving the License Key
The license key comes as a small autoextracting file — just start it anywhere on your computer in order to activate

your copy of compiler and remove the demo limit. You do not need to restart your computer or install any additional
components. Also, there is no need to run the mikroPascal PRO for PIC32 at the time of activation.

MikroElektronika 34

mikroPascal PRO for PIC32

Important:

- The license key is valid until you format your hard disk. In case you need to format the hard disk,
you should request a new activation key.

- Please keep the activation program in a safe place. Every time you upgrade the compiler
you should start this program again in order to reactivate the license.

35 MikroElektronika

CHAPTER2

mikroPascal PRO for PIC32
Environment

mikroPascal PRO for PIC32

Main Menu Options

Available Main Menu options are:

1=
]
E

rojeckt

|2
=
=]

=
(=]
o
L

35
o
=]

Related topics: Keyboard shortcuts, Toolbars

37

MikroElektronika

mikoPascal PRO for PIC32

File
File Menu Options

The File menu is the main entry point for manipulation with the source files.

L Mew Unit Ctrl+h
2 open Ctr+0

Recent Files 3
H save Ctrl+S
H Save As...
Il Close Chrl+F4
[oL Close l Shife+Cr+F4
E Prink Preview
s Frint.. Ctrl+P
B Ext alk+x

File Description

|0 mewunt cwin | | Open a new editor window.
|® Open o | Open source file for editing or image file for viewing.
| Recent Files >| Reopen recently used file.
|Fﬂ Save Chrl+s | Save changes for active editor.
|i._—f Save As... | Save the active source file with the different name or change the file type.
[cpse ar+r4 | | Close active source file.

|—L Close &l Shift+Clrl+F4 | Close all opened files.

[erint Previen | | Print Preview.
|& Prirt. .. Ctri+P | Print.
(8 Ext A+ | | Exit IDE.

Related topics: Keyboard shortcuts, File Toolbar, Managing Source Files

MikroElektronika 38

mikroPascal PRO for PIC32

Edit

Edit Menu Options

The Edit Menu contains commands for editing the contents of the current document.

47 Undo Chrl+Z
| Redo Shift-+Ckr+Z
by Cut Chrl+%
L@ Copy Chrl4+C
3 paste Chrl+Y
| Delete

Select all Chrl+a
2 Find... Chrl+F
J<| Find Next F3
43 FindPrevious Shift+F3
)R Replace... Chrl+R
[FrdmnFies.. Al+F3
4+ GotoLine... Ctri+G

Advanced 4

Edit Description

[@ o arkz | | Undo last change.
| Redo sit+cwz | | Redo last change.
EX: ar+x | | Cut selected text to clipboard.
E Copy Chri+C | Copy selected text to clipboard.
|I:E| Paste Chrl+y | Paste text from clipboard.
[pskte | | Delete selected text.
| Select Al Ctri+A | Select all text in active editor.
|2 end.. arr | | Find text in active editor.
|2 Find ext Fs | | Find next occurence of text in active editor.
|32 Frderevios shit+e3 | | Find previous occurence of text in active editor.
|2 meplace... arkr | | Replace text in active editor.
|Q Find In Files... Al+F3 | Find text in current file, in all opened files, or in files from desired folder.
|+ itotne.. a6 | | Go to line to the desired line in active editor.
| adusnced *| | Advanced Code Editor options

MikroElektronika

mikoPascal PRO for PIC32

Advanced »

Description

| 1.} Comment Shift+Ckrl+.

Comment selected code or put single line comment if there is no selection.

|{..} Uncomment Shift+Cerl+,

Uncomment selected code or remove single line comment if there is no selection.

|£- Indent Shift+Cerl+I

Indent selected code.

| 5% Qutdent ShiftrCt+l

Outdent selected code.

| Aa| Lowercase Chrl+al+L

Changes selected text case to lowercase.

| ad] Uppercase Chrl+ale+1

Changes selected text case to uppercase.

| A Tiecase Chrl-+AI+T

Changes selected text case to titlercase.

Find Text

Dialog box for searching the document for the specified text. The search is performed in the direction specified. If the
string is not found a message is displayed.

Find Text

Search for:
Options———————————————
Case sensitivity
Whole words only
Search from caret

Selected text only

Reqular expression

-
Direction
@ Forward
' Backward
OK Cancel

Replace Text

Dialog box for searching for a text string in file and replacing it with another text string.

[I] Replace Text EI@
Search for: mikroE lektronika -
Replace with: mikroE -

Option Direction
@ Forward
whole words only
Search from caret @ Gzl
Selected text only
FRegular expression u] 4 Cancel

MikroElektronika

40

mikroPascal PRO for PIC32

Find In Files
Dialog box for searching for a text string in current file, all opened files, or in files on a disk.

The string to search for is specified in the Text to find field. If Search in directories option is selected, The files to search
are specified in the Files mask and Path fields.

Text to find: |[gylAae= 1A g=Te]]

Options—————— ~Where
’7 I Case sensitive ’7(’3 Current file

Al opened files

Ll el sl @ Search in directories

Search directory option

-

C:\Program filesh, - !

Go To Line

Dialog box that allows the user to specify the line number at which the cursor should be positioned.

Go To Line Nuber El

Ok Cancel

Regular expressions option

By checking this box, you will be able to advance your search, through Regular expressions.

Search for: unsignedix20int

Options Direction
I Case sensitivity @ Forward

" whole words onl

Related topics: Keyboard shortcuts, Edit Toolbar, Advanced Edit Toolbar

41 MikroElektronika

mikoPascal PRO for PIC32

View

View Menu Options

View Menu contains commands for controlling the on-screen display of the current project.

1

3 Bl =l @

Debug Windows

Toolbars

Bookmarks

Code Explorer

Library Manager

Macro Editor

Messages

Project Manager Shift+Ctrl+F11
Project Settings

Routine List Chrl+L
Quick Converter ChrH+Q

View Image Preview

Assembly

Listing

Skatistics

Windows

MikroElektronika

42

mikroPascal PRO for PIC32

View

Description

Debug Windows

Show/Hide Software Simulator / mikrolCD (In-Circuit Debugger) Debug Windows.

Toolbars

Show/Hide Toolbars.

Bookmarks

Show/Hide Bookmarks window.

|'F£ Code Explorer Show/Hide Code Explorer window.

| Library Manager Show/Hide Library Manager window.

| Mo Editor Show/Hide Macro Editor window.

| dessages Show/Hide Messages window.

| Project Manager shift+Ciri+F11 | Show/Hide Project Manager window.

| Project Settings Show/Hide Project Settings window.
|51 Boutine List ar+L [Show/Hide Routine List in active editor.
| Quick Converter ar+a | Show/Hide Quick Converter window.
|EEJ Wiew Image Preview Show/Hide View Image Preview window.
|al view assembly View Assembly.

| Ll viewListing View Listing.

| view Statistcs View Statistics.

| Windows Show Window List window.

The Tools toolbar can easily be customized by adding new tools in Options(F12) window.

Related topics: Keyboard shortcuts, Integrated Tools

43

MikroElektronika

mikoPascal PRO for PIC32

Project

Project Menu Options

Project Menu allows the user to easily manipulate current project.

[ew Project. .. Shift+Ckr-+M
Open Project... Shift+Ctrl4+0
Open Project Graup...

Recent Projects »
Save Project

Save Project As...

Close Project

Close Project Group

Add File To Project...

Remove File From Project

Ed}t Search Paths...

Edit Project. . Shift+CtrH-E

Clean Project Folder, .,

Import Project... Zhrl+I

LT SN G 8 - R W IO N2 N 2

Export Project ChrHal+E

i’ Imnpoark Projeck...

Chrl+1

Project

Description

|L'$_~, Mew Project... Shift+Cerl+HN

Open New Project Wizard

|L% Open Froject... Shift+Chrl+o

Open existing project.

|l% Open Project Group..,

Open project group.

| Recent Projects

Open recently used project or project group.

| @ Save Project

Save current project.

||_-fﬂ Save Project As...

Save active project file with the different name.

| % Close Project

Close active project.

||% Close Project Group

Close project group.

|p__§f Add File To Praject...

Add file to project.

|¢5T Remaove File From Project

Remove file from project.

| Edit Search Paths...

Edit search paths.

|L'% Edit Project... Shift+Ctr+E

Edit project settings

|E+ Clean Project Falder...

Clean Project Folder

| E Import Project, .. Chrl+1

Import projects created in previous versions of mikroPascal.

|@ Export Praject Ctrl+Al+E

Export Project.

Related topics: Keyboard shortcuts, Project Toolbar, Creating New Project, Project Manager, Project Settings

MikroElektronika

44

mikroPascal PRO for PIC32

Build

Build Menu Options

Build Menu allows the user to easily manage building and compiling process.

Build
Rebuild all Sources

;ﬁ Build Al Projects

Chrl+F2
Alt+F2
Shift+F9
Stop Build all Chrl+F12

% Build + Program Ctrl+F11

Build Description
| % Buid a+Fs | Build active project.
| Rebuidalsourcss ak+F2 | Rebuild all sources in active project.
|:'§3 Build Al Projects shift+Fs | Build all projects.
| Stop Build Al ari+F1z | Stop building all projects.
|% Build + Program cri+F11 | Build and program active project.

Related topics: Keyboard shortcuts, Project Toolbar, Creating New Project, Project Manager, Project Settings

45

MikroElektronika

mikoPascal PRO for PIC32

Run

Run Menu Options

Run Menu is used to debug and test compiled code on a software or harware level.

|'_§3; Start Debugger F2
|'_;—?3 Stop Debugger Ctr+F2
=|} Run/Pause Debugger F&
03 Step Inko F?
d>0 Step Ower F&
(1 Step Out Chrl+Fs
&1 | Run To Cursor F4
@ Jump To Interrupk F2
= Toggle Ereakpoint FS
(B Clear Breakpoints Shift+Ctr+FS

Disassembly mode Alt+0

Run Description

|E—31. Start Debugger F3 | Start Software Simulator or mikrolCD (In-Circuit Debugger).
||§?3 Stop Debugger Chrl+Fz | Stop Debugger.
[E RunfPause Debugger Fs | | Run/Pause Debugger.
[o0 stepinte 7 | | Step Into.
|d>n Step Cwer Fé | Step Over.
|u¢> Step Out Ctri+Fs | Step Out.
[+ RunTo cursor F | [Run To Cursor.
|.|u Jump Ta Initerrupt Fz | Jump to interrupt in current project.
[Toggk sreakpoint Fs | | Toggle Breakpoint.
|Cq(Clear Breakpoints Shift-+Ctrl+FS | Clear Breakpoints.
| ossssenbly mode a0 | | Toggle between source and disassembly.

Related topics: Keyboard shortcuts, Debug Toolbar

MikroElektronika 46

mikroPascal PRO for PIC32

Tools

Tools Menu Options

Tools Menu contains a number of applications designed to ease the use of compiler and included library routines.

% mE Prograrmer Fi1

£

Package Manager

1@ Active Comment Editor Cerl+Alk+C
41 st Chart
L4 EEPROM Editar
Ll Export Code To HTML
() GLCD Bitmap Editor

Interrupk Assistant Chrl+alk+I
JT LD Custom Character
-: Seven Segment Editor
UDP Terminal
B UsART Terminal CErl+T
& Options F12

Tools Description

|<% mE Programmer Fit | Run mikroElektronika Programmer.
|-‘f.‘.‘- Package Manager Run Package Manager.
|1@ Active Comment Editor Cr-a+C | Show/Hide Active Comment Editor window.
|4 asuichart Run ASCII Chart
[geprom Edor Run EEPROM Editor
|.ﬂ Export Code To HTML Generate HTML code suitable for publishing source code on the web.
|0 GLcD Bimap Editor Run Glcd bitmap editor
(& b0 Temina Run HID Terminal
| Interrupt Assistant Cerl+Alk+1 ‘ Run |nterrupt Assistant
|:lT LCD Custom Character Run Lcd custom character
| T+ seven Seqment Edior Run Seven Segment Editor
| UDP Terminal Run UDP communication terminal
[S UserT Terminal i+ [Run USART Terminal
[opions Fiz | Open Options window

Related topics: Keyboard shortcuts, Tools Toolbar

47

MikroElektronika

mikoPascal PRO for PIC32

Help
Help Menu Options

@) Help F1

Migration Document

Check For Updates

mikroElektronika Support Forums

mikroElektronika Web Page
-4 How To Reqister

About

Help Description

|@ o Fi | | Open Help File.
| migration Document | | Open Code Migration Document.
| Check For Updates | Check if new compiler version is available.
| mikroElektronika Support Forums | Open mikroElektronika Support Forums in a default browser.
| mikroElekironika web Page | | Open mikroElektronika Web Page in a default browser.
| .~ How To Register | Information on how to register
[apar | | Open About window.

Related topics: Keyboard shortcuts, Help Toolbar

MikroElektronika 48

mikroPascal PRO for PIC32

mikroPascal PRO for PIC32 IDE

IDE Overview
The mikroPascal PRO for PIC32 is an user-friendly and intuitive environment.

For a detailed information on a certain part of IDE, simply click on it (hovering a mouse cursor above a desired IDE part
will pop-up its name):

a]
=]
o
a
o
o
a
a
a
=]
a
=]
B
=]
a
=]
o
=]
a
a
o
=]
o
a
a
o
a
=]
a
=]
a
=]
ja]
=]
a
=]
o
=]
o
a
o
o
a
w0

A
3 ZE‘

i

i

{

My,
.

M
e
P L

4R

S

i
[] ' L 08 o B

8 m ek el Wy Pl e 3 i 12

| T

W
)
a
[

1 ey
£ ol Succaasbuly v o e i B B |
w B by Comotnd e |
1% Ubed B vl 32 {HEPRY Fre B bt 61] B e 521D Frow B it 0P |

- The Code Editor features adjustable Syntax Highlighting, Code Folding, Code Assistant, Parameters Assistant, Spell
Checker, Auto Correct for common typos and Code Templates (Auto Complete).

- The Code Explorer is at your disposal for easier project management.

- The Project Manager alows multiple project management

- General project settings can be made in the Project Settings window

- Library manager enables simple handling libraries being used in a project

- The Messages Window displays all messages during compiling and linking.

- The source-level Software Simulator lets you debug executable logic step-by-step by watching the program flow.

- The New Project Wizard is a fast, reliable, and easy way to create a project.

- Help files are syntax and context sensitive.

- Like in any modern Windows application, you may customize the layout of mikroPascal PRO for PIC32 to suit
your needs best.

- Spell checker underlines identifiers which are unknown to the project. In this way it helps the programmer to spot
potential problems early, much before the project is compiled.

- Spell checker can be disabled by choosing the option in the Preferences dialog (F12).

49 MikroElektronika

mikoPascal PRO for PIC32

Code Editor

The Code Editor is advanced text editor fashioned to satisfy needs of professionals. General code editing is the
same as working with any standard text-editor, including familiar Copy, Paste and Undo actions, common for Windows
environment.

Available Code Editor options are: Editor Settings, Editor Colors, Auto Correct, Auto Complete and Style.

Editor Settings
Main Editor Settings Features are:

- Auto Save

- Highlighter

- Spelling

- Comment Style

- Code Folding

- Code Assistant

- Parameter Assistant

- Bookmarks and Go to Line

Options |Z‘

Editor Settings

Project Files
W Restare Last Opened Project " Restore all Opened Files
" Save Breakpoints " Save Bookmarks

If Opened File Is Externally Madified

) prompt For action @ Reload File, but da nat prompt:) Ignors externally made changes
Auto Save

W Enable Auto Save Timeout Inkerval: minutes

Highlighter

W Highlight brackets
W' Highlight begin. .end pairs

Spelling

' Check Spelling

Comment style
@ 4.}

) Ji tsingle ling)
Advanced Editor Cptions

E Open options diglog

ode Folding
V' Enable code falding

V' Show Tdent Guides

oK Cancel

MikroElektronika 50

mikroPascal PRO for PIC32

Auto Save

Auto Save is a function which saves an opened project automatically, helping to reduce the risk of data loss in case of
a crash or freeze. Autosaving is done in time intervals defined by the user.

Highlighter

Highlighting is a convenient feature for spotting brackets which notate begin or end of a routine, by making them
visually distinct.

Spelling

The Spell Checker underlines unknown objects in the code, so they can be easily noticed and corrected before compiling
your project.

Select Tools » Options from the drop-down menu, or click the Show Options Icon g and then select the Spell
Checker Tab.

Comment Style

Code Editor has a feature to change the comment style to either single-line or multi-line. Commenting or uncommenting
the selected code is done by a simple click of a mouse, using the Comment Icon {..} and Uncomment Icon {..} from
the Advanced Edit Toolbar.

Code Folding

Code folding is IDE feature which allows users to selectively hide and display sections of a source file. In this way it is
easier to manage large regions of code within one window, while still viewing only those subsections of the code that
are relevant during a particular editing session.

While typing, the code folding symbols ([=] and [+]) appear automatically. Use the folding symbols to hide/unhide the
code subsections.

%hegin

PORTR :=0:
PORTE := 0:
Led Init():

LCD_Out{i,1,txc[0]);
LCD_Out(2,1,txe[1]) >
delay w=s(1000) ;

Lod Cmd(l) 2

LCD_Out{i,1,txc[1]);
LCD_Out (2,4,txt[2]) 2
delay w=(500)

end.

hegin El

51 MikroElektronika

mikoPascal PRO for PIC32

Another way of folding/unfolding code subsections is by using Alt+«— and Alt+—.

If you place a mouse cursor over the tooltip box, the collapsed text will be shown in a tooltip style box.

pegin [}
X .
hegin
FPORTA :=0;
PORTE := 0;
Led Init():

LCD_Out(l,1,txc[0]):
LCD_Out (2, 1,txc[1]);
delay_ms (1000) ;

Led Credil):

LCD_Cut{l,1,txt[1]):
LCD_Cut (2,4,txt[2]):
delay_ms (500) ;

end;

Code Assistant

If you type the first few letters of a word and then press Ctrl+Space, all valid identifiers matching the letters you have
typed will be prompted in a floating panel (see the image below). Now you can keep typing to narrow the choice, or you
can select one from the list using the keyboard arrows and Enter.

5p

[variable s SPibwee
wariable sfr SPDR: byte
wariable sfr SPSR: bybe
variable sfr SPCR: byhe

Parameter Assistant

The Parameter Assistant will be automatically invoked when you open parenthesis “(” or press Shift+Ctrl+Space. If the
name of a valid function precedes the parenthesis, then the expected parameters will be displayed in a floating panel.
As you type the actual parameter, the next expected parameter will become bold.

channel : byte
ADC_Rea

Bookmarks

Bookmarks make navigation through a large code easier. To set a bookmark, use Ctrl+Shift+tnumber. The same
princliple applies to the removal of the bookmarks. To jump to a bookmark, use Ctrl+number.

Go to Line

The Go to Line option makes navigation through a large code easier. Use the shortcut Ctrl+G to activate this option.

MikroElektronika 52

mikroPascal PRO for PIC32

Column Select Mode

This mode changes the operation of the editor for selecting text. When column select mode is used, highlighted text
is based on the character column position of the first character selected to the column of the last character of text
selected.

Text selected in this mode does not automatically include all text between the start and end position, but includes all

text in the columns between the first and last character selected.

Column mode editing is sometimes referred to as block mode editing as the act of selecting text forms a rectangle.

To enter this mode, press Alt + Left mouse button, drag the mouse towards the desired direction thus selecting the

text.
Editor Colors
Options |5 |
Schemes
Current Scheme: |CFfice 2003 Blue - | New Scheme Delete
Scheme Setup 1 | #DEFINE PWM SEQUENCE ON ”
Element void Setup ABI () org Ox0041 {
Assembler
Binary
Character sfr char P2 ahsolute Oxil;
Cornrment = const code const wvar = 10;
::Ioatd il idata unsigned long long var[10]:
excadecimal —
Identifier Xdata signed long ext_var;
Tllegal Char pdata char pext_wvar:
Murnber bdata bvar;
Cickal
Prepracessor 10 sbit bit warisble at P2.EO:
Reserved Word 3
gtpr?;ge float float wvarishle:
Symbal unsigned int hex wvariable:
web link signed int dec varisble;
- char bin varishle = 'a';
signed char octal warishle:
Text Attributes
Eiold Undetline Italic Strikeaut FF Inititate ABS controller for new
Foreground: Background: // session layer
z0 PO = OxFO: b
I Gk v| [—lack v
float_wvariable = 12.345;
Active Line Color: hex_wvarishle = Dx1&34;
| [Custom hd | ¥ Shaw Active Line dec_wvarisble = -12345;
hin wvarishle = 0kh10101010;
Gutter Colors oct;l varishle = :
Gradient From: Gradient To: —) ’ :
] — =T v| [whie] octal variable += B: /% illegal charac
Fonk: _ _
I Elue - asm nop: S/ single assembly line
v
=0 >
0K Apply Cancel

53

MikroElektronika

mikoPascal PRO for PIC32

Editor Colors option allows user to set, change and save text and color settings organized in schemes. Schemes
represent custom graphical appearance that can be applied to GUI (Graphical User Interface) to satisfy tastes of
different users.

Auto Correct

Auto Correct option facilitates the user in such a fashion that it automatically corrects common typing or spelling errors
as it types.

Options |§|
¥ Enable Auto Carrect = Add Criginal: Replacement:
8 rRemove | | |

Original | Replacement

wihiel wihile:

fi if

itn ink

cahr char
Advanced

W Cotrect Case to Match Declaration W show Motification
QK Apply Cancel

This option is already set up to automatically correct some words. For example, if you type whiel, it will be corrected
to while when you press the spacebar:

while |

Autocorrect from whiel to while

MikroElektronika 54

mikroPascal PRO for PIC32

The user can easily add its common typos by entering original typo, for example btye, to the Original box, and
replacement, by te, to the Replacement box, and just click "Add" button.
Next time when the typo occurs, it will be automatically corrected.

Auto Complete (Code Templates)

Auto Complete option saves lots of keystrokes for commonly used phrases by automatically completing user's typing.

Options

W Enable Auto Complete

Key word: |dow | [+Md][¥ Remove]

Description; {do while

Kew word Description gj
E]

far far {no {)
faors for statement

Ftemplate function header template

function ink Func declaration

if (no { 1)
if {no beginfend) else {no begin/end)

ifes if else

ifs if statemnent

proc void func declaration

ptemplate header comment for a project

switch switch statement

55 MikroElektronika

mikoPascal PRO for PIC32

The user can insert the Code Template by typing the name of the template (for instance, dow), then press Ctrl+J and
the Code Editor will automatically generate a code:

dDmI

Auto Complete

do while

You can add your own templates to the list by entering the desired keyword, description and code of your template in
appropriate boxes.
Autocomplete macros can retreive system and project information:

- $DATE% - current system date

- $TIMES - current system time

- $DEVICES - device (MCU) name as specified in project settings
- $DEVICE CLOCKS - clock as specified in project settings

- $SCOMPILERS - current compiler version

These macros can be used in template code, see template ptemplate provided with mikroPascal PRO for PIC32
installation.

MikroElektronika 56

mikroPascal PRO for PIC32

Code Explorer

The Code Explorer gives clear view of each item declared inside the source code. You can jump to a declaration of
any item by double clicking it, or pressing the Enter button. Also, besides the list of defined and declared objects, code
explorer displays message about the first error and it's location in code.

Code Explorer]
=
= G web links
@ hkkpe e, miky o2, com
G Uses
= B main
5 LCD_RS
5 LCD_EM
5 LCD_Dé
5 LCD_DS
5 LCD_Dé
5 LCD_D7

o LCD_RS_Direction
o LCD_EM_Direction
o LCD_D4_Direction
o LCD_DS_Direction
o LD _Da_Direction
o LZD_D7_Direction
o kxkl

o kxk2

o kxkE3

o kxk4

o

Ed Move_Delay

The following options are available in the Code Explorer:

Icon Description

E} Expand/Collapse all nodes in tree.

B | Locate declaration in code.

57 MikroElektronika

mikoPascal PRO for PIC32

Routine List

Routine list diplays list of routines, and enables filtering routines by name. Routine list window can be accessed by
pressing Ctri+L.

You can jump to a desired routine by double clicking on it, or pressing the Enter button. Also, you can sort routines by
size or by address.

Routine List X

Sort By Name Sort By Line

e 7 -!_.-rnain

Line: S0 OMDVE_DeIay
Line: 54 E#IShift_Text Left
Line: 64 Eshift_Text_Right

Project Manager

Project Manager is IDE feature which allows the users to manage multiple projects. Several projects which together

make project group may be open at the same time. Only one of them may be active at the moment.
Setting project in active mode is performed by double clicking the desired project in the Project Manager, which will

result in bolding the project's name.
Also, the name of the currently active project will be diplayed in the Program Manager window title, alongside with the

number of projects in project group.

Project Manager [1/1] - Lcd.mpp32 c\Progr.. [X]

FEELEFEEEYE

= % Lcd.mpp32
=107 sources
Led.mpas
[T Binaries
1T Project level defines
IC=) Image Files
IT=) EEPROM Files
1T Active Comments Files
217 output Files
Led. e
Lcd.asm
I Other Files

MikroElektronika 58

mikroPascal PRO for PIC32

Following options are available in the Project Manager:

Icon

Description

=

Save project Group.

Open project group.

Close the active project.

Close project group.

Add project to the project group.

Remove project from the project group.

Add file to the active project.

Remove selected file from the project.

Build the active project.

P || |G| e | | G |68 |G | o8

Run mikroElektronika’s Flash programmer.

For details about adding and removing files from project see Add/Remove Files from Project.

Related topics: Project Settings, Project Menu Options, File Menu Options, Project Toolbar, Build Toolbar, Add/Remove
Files from Project

59

MikroElektronika

mikoPascal PRO for PIC32

Project Settings
The following options are available in the Project Settings window:
- Device - select the appropriate device from the device drop-down list.

- MCU Clock - enter the clock frequency value.
- Build/Debugger Type - choose debugger type.

Project Settings 3]
Elgmbevice

Mame: |P32m:<460F512L -

sgnc

Frequency: 50,000000 | MHz

=1 Build{ Debugger Typ

Euild Twpe
() Releass () ICD Debug

Debugger

(®) Software) mikroICD

Related topics: Edit Project, Customizing Projects, Project Manager

MikroElektronika 60

mikroPascal PRO for PIC32

Library Manager

Library Manager enables simple handling libraries being used in a project. Library Manager window lists all libraries
(extension .emc1) which are instantly stored in the compiler Uses folder. The desirable library is added to the project

by selecting check box next to the library name.

In order to have all library functions accessible, simply press the button Check All ,"_'] and all libraries will be selected.

In case none library is needed in a project, press the button Clear All ﬂ and all libraries will be cleared from the

project.

Only the selected libraries will be linked.

Library Manager &3]

b |] i e

= mikroE

aDcC

[EitreverseComple:
[Buttan

O can

[can_sp

|:| Conversions
C_Type

[] eerrom

[Fer

[Firradix

[FLASH

[Gled

[Gled_Fonts
[1zc

[tirradix

[keypaddx4
Led
Lcd_Constants
[Manchester
1 matrices

Mrnc
Mrmc_FAT16
|:| One_Wire

[Port_Expander
psz

7 P

L 3 3 o 3 3 A e

- BB

L B R o 3 o A

s

|

Icon

Description

“Uses” folder.

2, Refresh Library by scanning files in “Uses” folder. Useful when new libraries are added by copying files to

Rebuild all available libraries. Useful when library sources are available and need refreshing.

04 | [

Include all available libraries in current project.

L&

No libraries from the list will be included in current project.

L&

Restore library to the state just before last project saving.

61

MikroElektronika

mikoPascal PRO for PIC32

Managing libraries using Package Manager

The Package Manager is a tool which enables users to easily install their own libraries in the mikrolDE. Libraries are
distributed in the form of a package, which is an archive composed of one or more files, containing libraries. For more
information on Package Manager, visit our website.

Upon package installation, a new node with the package name will be created in the Library Manager. For example:

[Library Manager %]
e e | [[

[sound]

[sp1

[] srP1_Ethernst

[srr_aicd

[sPI_Led

[sp1_Leds

[sP1_Tegsac

[sprintf

[sprinti

[sprintl

TEIEIC

I:‘ Tirne

[TouchPanel

Trigonometry

L3

L3 I O

BB

3l

[}

n B-E
=
E
el
5

onversions
= __Lib_Corversions2
ByteToBinary Sk
‘WordTaBinaryStr
LongWwordToBinary3tr
BinaryToGray

arayToBinary ,Z

From the Library Manager, the user can also uninstall the desired package by right clicking the the appropriate node,
and from the drop-down menu choose Uninstall package:

[Library Manager a
e b)) o

[sound

O ser

[sP1_Ethernet

[sPI_led

[5PI_Led

[sPI_Lcds

[sP1_Te9eaC

[] sprintf

[sprinti

[sprintl

TROESC

I:‘ Tirne

[J TouchPane!

Trigonometry

[mwr

[uarT

>

() 2 = 3 = R 3 3 = Y =

Uninstall package

BinaryToGray

GrayToBinary ,:J

Related topics: mikroPascal PRO for PIC Libraries, Creating New Library

MikroElektronika 62

mikroPascal PRO for PIC32

Routine List

Routine list diplays list of routines, and enables filtering routines by name. Routine list window can be accessed by

pressing Ctrl+L.

You can jump to a desired routine by double clicking on it, or pressing the Enter button. Also, you can sort routines by

size or by address.

Routine List (3]

Sort By Name: Sort By Line

£ 9 '!.-I'I'I-:III'I
Line: S0 OMove_DeIay
Line: 54 Edshift_Text _Left
Line: &4 E#Shift_Text_Right

Statistics

After successful compilation, you can review statistics of your code. Click the Statistics Icon [

Memory Usage Windows

Provides overview of RAM and ROM usage in the various forms.

63

MikroElektronika

mikoPascal PRO for PIC32

Variables

Displays variables sorted by addresses.

TA
[l stanc usea: sabytes 01%
L] omavatase: seestytes 9%
Total: T 3Zeabytes
Functions Tree
Summary
Project Nerme: G2, Yoevelopment Syskommal VIZHEE vELCD (OB E16fedmepde Thwe: 131201 10340 P
sy laotcon

Used RAM Locations

Displays used RAM memory locations and their names.

Variables Sorted By Address
* Chek on colurmn haader to cert Lable bry Addness, Name, Uinigus Assarmbier Natme of Sine
Address Pame Unigue Assembler Name Size In Bytes
x0000 [T o 4
0uD004 R1 R1 4
00028 Ri0 Ri0 4
oozt R11 Ril 4
0030 Riz Rz “
OuD034 R13 R13 4
Ol R4 Ri4 4
Ox03C R15 R1S 4
C040 R16 R16 4
D044 7 R17 4
a2 R15 R12 4
On004C R19 R19 4
Ow000E R2 R2 4
w0050 R20 R20 4
0uD0S4 R21 R2L 4
Ox0058 R22 R22 4
w005C R23 R23 4
OaD0ED R24 R24 4
00064 R25 RS 4
Cal0ES P26 R26 4
Q006 R27 R27 4
0=0070 R2E R2& 4
Ow074 R29 =] 4
00000 3] 4]

MikroElektronika

64

mikroPascal PRO for PIC32

SFR Locations

Displays list of used SFR locations.

SFR Locations

No Address Name Ko Address Name No Address Name

0 OxBFS00000 WOTCON 367 OKEFE0ADGY CMSTATCLR 774 OEFEEE0GC LATRINY

1 OxBFECOED0 RTCOON 308 O:EFE0ADSC CMSTATENY 775 OwBFESS0GE LATBSET

2 <BFE00ZI0 RTCALRM 39 OxEFEO0ADSE CMSTATSET 776 EFBSE0AD LATChits

3 («BFBOOZ20 RTCTIME 300 D«BFERGICH CNCOMbits 777 EFBBE0AY LATCCOLR

4 O«BFEO0230 RTCDATE 391 nBFES5ICH CHCONCLR 778 (EFEBEOAC LATCIN

S OxBFRBO024D ALRMTIME 392 OxBFEEGICC CHCONINY 779 nBFEsE0A8 LATCSET

& OxBFEOOZS0 ALRMDATE 393 OxBFSS61CH CNCONSET 780 (uBFSES0EQ LATDbits

7 OxBRE0OGOD T1C0M 394 (nBFE36100 ChENDits T8l OuBFSEG0E4 LATOCLR

& (xBFS00G10 THRL 395 OxBFE36104 CHENCLE: 782 (nBFSBG0EC LATORY

9 (xBRE00G20 FR1 396 OxBFEB510C CRENINY FE3 | («BFODGOES LATDSET
10 OeBRE0OS00 TaCoM 307 | OxBFESEI0E CHENSET o4 (BFESS120 LATEDits
11 OeBRE00E10 ™R 308 WEFBSS1ED CHPUEDIt TES (nBFESS124 LATECLR
12 (xBFBO0A20 2 399 nEFBBSIES CHPUECLR TE5 hBFBE61ZC LATERV
13 (NEFBD0ADD TICON 400 OkEFESHIEC CNPUEINY 787 OuBFESG128 LATESET
14 NEFB00AI0 TMRI 401 OWBFBBSIER CNPUESET 788 DWBFEEG160 LATFbits
15 ONEFBO0AZD PR3 402 O:EFB0SE00 CVRCONbItS 789 DWBFEES1G4 LATFCLR
16 MEFS0DCO0 THC0MN 403 OWEFBOSEOH CVRCONCLR 790 eEFBBG1GC LATFINV
17 mBFE0DCI0 TMRY 404 OwBFE0990C CVRCONDNY 791 OuBFE2516E LATFSET
18 mEFE0DC20 R4 405 OxEFB0SS08 CVRCONSET 792 (EFSBG1AD LATGhits
19 O«BREOOEDD TSCOM 406 DxBFEEZ060 DCHOCCHbits 793 EFEB61A4 LATGCLR
20 OxBREDOEI0 TMRS 407 | OxBFBE3DGA DCHIOONCLR 794 BFEB61AC LATGINV
21 («BFBO0E20 RS 408 OxBFE306C DCHOCCMENY TS| (WEFEB61AD LATGEET
22 (eBREIN00 1IC1C0N 409 OxEFBE068 DCHOOONSET 796 (BFECF420 HYMACORbIs
23 (eBRE0EN10 IC180F 410 OxEFBE3100 DCHOCPTRbits FOT uBFECF424 WYADDRCLR
24 (eBRE0E200 1C200N 411 C:EFBE3104 DOHOCFTROLR. 78 eEFE0F42C MYMADORING - |

ROM Memory Usage

Displays ROM memory space usage

in a pie-like form.

ROM Memory Usage

OM Lisage
[7S bytes 06%
L] Free 521214 bytes 99.4 %
Tota: 524289 bytes
By Size Chart
By Address Chart
Functicns Tree
Summary
Projact Name: C:J, WD Time: 1F31{2001 1:03:40 PH
erev e e

65

MikroElektronika

mikoPascal PRO for PIC32

ROM Memory Constants

Displays ROM memory constants and their addresses.

ROM Memory Constants
Address Name
‘SD000ATC TICS_xtl
ROM Memory ‘S0000A9D FICS 2
Corstants
Y0000495 FICS_tt3
SO0D0AED 71C5_bitd
Functions Sored
By Name Chart
Functions Sorted
By Siza Chart
Functions Sorted
By Addrecs Chart
Functions Tree.
Summary
Project Nome: C:\.. \oevelopment Systems{LV-EHI vELCD (COB BxiB)edmep3e Tome: If3L{Z011 1:03:40 P
wnumlioncon

Sorts and displays functions in various ways.

Functions Sorted By Address
* Chck on column header to sort table by Address, Name, Unigue Assembler Hame or Size.
Address MName Uriiguee Assembler Name Size In Bytes
000000034 Mave_Delay _Mave_Delay ©
90000534 man main 488
OxS0000084 O30 __Cc2ow e
OxBFCO03E0 __ BootGenExcept __ BootGerExcept 15
UXI0000E4 __GenExcept __GenExcept 15
5 OxBFCI0000 _PoatStartp __PootStarip 24
By Name Chart 0000000 Delay_tus _Dalay_tus =
0xU000001C Delay_S0us _Delay_S0us %
pEE A0000078 Delay_S500Us _Delay_S500.5 ®
0390000218 Led_Cmd _Led_Cmed 424
0x90000040 Lod_che_CP _Led chr CP %
LA 0x90000300 Led_init _Led Init 1220
OxO0000004 Led_tut _Led_Cut 324
Functions Tree.
Summary
Project Name: C:1. |Development Systems L VA2he véILCD (COG 2xt8)iled a2 Teme: 13112011 10340 P
SR

MikroElektronika

66

mikroPascal PRO for PIC32

Functions Sorted By Name Chart

Sorts and displays functions by their name, in the ascending order.

Functioes Tree. : :
Lot ot = ‘
= | el
° CEEE a0 S0 &0 70 800 S0 400 1100 130 130
.
R E LR B LR Teme: LEHL{ZOLL L0340 P

vy mccon

Functions Sorted By Size Chart

Sorts and displays functions by their sizes in a chart-like form.

0 100 20 300 a0n 0 500 00 00 900 1000 1,100 1,200 1300

.
Project Name: 1., J0evelopment SystemsiLvaZHI ve.CO (C0% Ex16fied mep3z Toos: L3L{Z0L 1030 FH
vy mzcR.con

67

MikroElektronika

mikoPascal PRO for PIC32

Functions Sorted By Addresses

Sorts and displays functions by their addresses, in the ascending order.

Led_the ¢P 1

*

Praject Name: €1, Joevelopment SysemsilYIZHE vEILCD (COG Zxigliked mepde Toe: 13112011 10340 FH
ey mizon.cn

Function Tree

Displays Function Tree with the relevant data for each function.

Profect Name: C:1,..|Development SystemeLV3ZHE vEILCD (06 2a18likcd mapd2 Time: /3112011 10340 FH
e os.com.

MikroElektronika

68

mikroPascal PRO for PIC32

Memory Summary

Displays summary of RAM and ROM memory in a pie-like form.

Summary

FDATA:
B st vsec: abyes 0.1%
] omae: s:7msbyes wa%
Tota: 32768 bytes
FROM Usage
B s WOTShetes 0.6%
E Free: E21214 bytes 00.4 %
y Tota: 524209 btes.
|
 Functions Tree:
:
Frofect Nare: €11, \pevelopment SysemsiLVaaHe wEIL.CO (C06 Zx16 kel Trne: L1201 110340 P4
veoewy mizos com

69

MikroElektronika

mikoPascal PRO for PIC32

Messages Window
Messages Window displays various informations and notifications about the compilation process.

It reports for example, time needed for preprocessing, compilation and linking; used RAM and ROM space, generated
baud rate with error percentage, etc.
The user can filter which notifications will Messages Window display by checking Errors, Warning and Hints box.

In case that errors were encountered during compiling, the compiler will report them and won’t generate a hex file. The
Messages Window will display errros at the bottom of the window by default.

The compiler also reports warnings, but these do not affect the output; only errors can interefere with the generation
of hex.

Messages 3]
Errars \Warnings Hinks
Line Message Mo, Message Text Unit
0 1 mPPIC32, exe -DBG -pP32ME460FS1 2L -MSF -DL -55...
0 133 Carmpilation Started C:A\Program Files\MikroglekkronikalmikroPascal PRO For PLL..
1 1015 Hink: Compiling unit "C:\Program FilesiMikroelektroni... _ Lib_Delays.mpas
177 1010 Hink: Unit " __Lib_Delays.mpas” has been recompiled _ lib_Delays.mpas
0 134 Campiled SuccessFully C:A\Program Files\MikroglekkronikalmikroPascal PRO For PLL..
0 133 Carmpilation Started C:A\Program Files\MikroglekkronikalmikroPascal PRO For PLL..
1 1015 Hink: Compiling unit "C:\Program FilesiMikroelektroni... LCDumpas
a5 1010 Hink: Unit "LCD.mpas" has been recompiled LCD.mpas
0 134 Campiled SuccessFully C:A\Program Files\MikroglekkronikalmikroPascal PRO For PLL..
0 139 all files Carpiled in 16 ms
0 1144 Used R (bykes): 32 (100%) Free RE (bvtes): 0(0... Used R¥ (bykes): 32 (100%) Free Rx (bvkes): 0 (0%:)
a 1144 Static RAM (bvtes): 46 Dyvnamic RAM (bytes): 32718 Static RAM (bybes): 46 Dvnamic PRAM (bytes): 32718
] 1144 Jsed ROM (bybes): 3356 {1%:) Free ROM (bytes): ... Used ROM (byvbes): 3356 (1% Free ROM (bytes): 52093,
] 145 Project Linked Successfully LCD. mpp32
] 140 Linked in 203 ms
] 141 Project 'LiCD.mpp32' completed: 375 ms
] 103 Finished successfully: 01 Feb 2011, 033725 LCD. mpp32

Double click the message line in the Message Window to highlight the line where the error was encountered.

MikroElektronika 70

mikroPascal PRO for PIC32

Quick Converter

Quick Converter enables the user to easily transform numbers from one base to another.

Quick Converter (3]
Size Sign DECIMAL HEXADECIMAL BIMARY CHARACTER
88 b:s @ Unsigned | 77| | oooooo4p| | oooooogo oooooooo ogocooo o1oottot | | M|
16 bits
®3zhits O Signed
FLOAT DECIMAL
136.893||
Format . .
Opin | FLOAT 32 bit (IEEE) FLOAT 32 bit (MICROCHIF) RADI: 1.15
® Hex 4308E49C) | genEE+sC| | |

The user can convert integers of various sizes (8, 16 or 32 bits), signed and unsigned, using different representation
(decimal, hexadecimal, binary and character).

Also, Quick Converter features float point numbers conversion from/to Float Decimal, Float 32bit (IEEE), Float 32bit
(Microchip) and Radix 1.15 for PIC32 family of MCUs.

Macro Editor

A macro is a series of keystrokes that have been 'recorded' in the order performed. A macro allows you to 'record’ a
series of keystrokes and then 'playback’, or repeat, the recorded keystrokes.

Macros

GEAPAS R

£

71

MikroElektronika

mikoPascal PRO for PIC32

The Macro offers the following commands:

Icon Description

4‘:‘;3 Starts ‘recording’ keystrokes for later playback.

d?:? Stops capturing keystrokes that was started when the Start Recording command was selected.

b@ Allows a macro that has been recorded to be replayed.

é? New macro.

@ Delete macro.

Related topics: Code Editor, Code Templates

Image Preview

There are a lot of occassions in which the user besides the code, must look at the appropriate schematics in order to
succesfully write the desired program.
The mikroPascal PRO for PIC32 provides this possibility through the Image Preview Window.

To add an image to the Image Preview Window, right click the Image Files node in the Project Manager:

Project Manager [1/1] - RS485_Master_Example.mpp32 28
LR EEEY D
= I_i}, R5485_Master_Example.mpp32
=) Sources
RS5485_Master_Example.mpas
[T Binaries
== Project Level Defines
- [Image Files
[C=) EEPROM Filel
[T Active Com
=I5 utput Files ﬁ‘ﬂ Add Project

EEE

=7 Cther Files

Close Project Chrl+k

|Lb‘j‘ £dd File To Project...

&f Remave File From Project

® puild Chr+F9
& mE Programmer F11

MikroElektronika 72

mikroPascal PRO for PIC32

Now, navigate to the desired image file, and simply add it:

Project Manager [1/1] - R3485_Master_Example. mpp32 x|

[EIEEIEY

= % R5485_Master_Example.mpp32
E} [Sources
RS5485_Master_Example.mpas

E] Einaries

== Project Level Defines

IC=) Image Files
i RS_485.]

[C=) EEPROM Files

[T Active Comments Files

=[5 Qutput Files

----- E RS5485_Master_Example.hex

Next, right click the added file, and choose Set As Preview Image:

Project Manager [1/1] - RS485_Master_Example.mpp32 Za

[E IR

= E}, R5485_Master_Example.mpp32
B [Sources
R5485_Master_Example.mpas
[T Binaries

IC7) Project Level Defines

== EEPROM Files Save Project Group

[T Active Comments Fi Close Project Chrl+k

Add Project

H B‘ ther Files Remowve Project

Add File To Project...

Remove File From Project

Build ChrHFo

e LLOGEG &

mE Programmer Fi1

Set As Preview Image CtriH-Al+P

13

MikroElektronika

mikoPascal PRO for PIC32

Once you have added the image, it will appear in the Image Preview Window:

: briaidie b2k b SLaTAN S haiie dLS @
) T 30 8 e £}

[T ey ——

war man

1

3
jif
28849101d

i
[1]

it e
e gt e 300

o wen e
all uons o

[T
£8849101d
[1]

Also, you can add multiple images to the Image Files node, but only the one that is set will be automatically displayed
in the Image Preview Window upon opening the project.

By changing the Image Preview Window size, displayed image will be fit by its height in such a way that its proportions
will remain intact.

Toolbars
This section provides an overview of the toolbars available in mikroPascal PRO for PIC32 Help:

- File Toolbar

- Edit Toolbar

- Advanced Edit Toolbar
- Find Toolbar

- Project Toolbar
- Build Toolbar

- Debug Toolbar
- Styles Toolbar
- Tools Toolbar

- View Toolbar

- Layout Toolbar
- Help Toolbar

MikroElektronika 74

mikroPascal PRO for PIC32

File Toolbar
L 2-H @ 8 &

File Toolbar is a standard toolbar with the following options:

Icon

Description

Ij Opens a new editor window.

@ ~ | Open source file for editing or image file for viewing.

lH | Save changes for active window.

D

Save changes in all opened windows.

o)

Print Preview.

13

Print.

Edit Toolbar

Q@ | 4B (3

Edit Toolbar is a standard toolbar with the following options:

Icon Description

<3 | Undo last change.

Redo last change.

e || ¥

Cut selected text to clipboard.

1
¥
11

Copy selected text to clipboard.

b

Paste text from clipboard.

75

MikroElektronika

mikoPascal PRO for PIC32

Advanced Edit Toolbar

121
i

bttt L SEE -2 |

Advanced Edit Toolbar comes with the following options:

Icon Description

{..} | Comment selected code or put a single line comment if there is no selection

.} Uncomment selected code or remove single line comment if there is no selection.

=1y | Select text from starting delimiter to ending delimiter.

ey | GO to ending delimiter.

=>_'] Go to line.

%= | Indent selected code lines.

=% | Outdent selected code lines.

L. | Generate HTML code suitable for publishing current source code on the web.

Find/Replace Toolbar
P RP AL

Find/Replace Toolbar is a standard toolbar with the following options:

Icon Description

)3 Find text in current editor.

Find next occurence.

Find previous occurence.

=0 |0 |0

Replace text.

I

Find text in files.

MikroElektronika 76

mikroPascal PRO for PIC32

Project Toolbar

i 5 AR MBS e RET STl Nk

Project Toolbar comes with the following options:

Icon Description
I'jl-, New project.
I'i% = | Open Project
IE‘E Save Project
4 | Edit project settings.
I'ig Close current project.
—| |Clean project folder.
F | Add File To Project
&’I Remove File From Project
Build Toolbar
o T B
Build Toolbar comes with the following options:
Icon Description

@,

Build current project.

Build all opened projects.

| B

Build and program active project.

4

Start programmer and load current HEX file.

17

MikroElektronika

mikoPascal PRO for PIC32

Debug Toolbar

@
E

@ ob ol | @ i By | &

Icon Description

Eﬁ, Start Software Simulator or mikrolCD (In-Circuit Debugger).

EDJ Run/Pause Debugger.

|'_;—?3 Stop Debugger.

i1 | Step Into.

w5, | Step Over.

i1g: | Step Out.

2] | Run To Cursor.

= Toggle Breakpoint.

View Breakpoints Window

l}& Clear Breakpoints.

&d” | View Watch Window

-:jl'f:- View Stopwatch Window

Styles Toolbar

Styles toolbar allows you to easily change colors of your workspace.

Office 2003 Blus
i
Office 2003 Silver
Office 2003 Olive

MikroElektronika

8

mikroPascal PRO for PIC32

Tools Toolbar
=44

Tools Toolbar comes with the following default options:

Icon Description

Bl | Run USART Terminal

L |EEPROM

+. | ASCIl Chart

-,‘,‘ Seven Segment Editor.

A@ Open Active Comment editor.

E‘ Options menu

Tip : The Tools toolbar can easily be customized by adding new tools in Options menu window.

View Toolbar

dl [

View Toolbar provides access to assembly code, listing file and statistics windows.

Icon Description

@] | Open assembly code in editor.

[| | Open listing file in editor.

il | View statistics for current project.

79 MikroElektronika

mikoPascal PRO for PIC32

Layout Toolbar

Styles toolbar allows you to easily customize workspace through a number of different IDE layouts.

aal
E

024768

Debug layout
[efault

Help Toolbar

(7

Help Toolbar provides access to information on using and registering compilers:

Icon Description

4 | Open Help file.

2 | How To Register.

Related topics: Keyboard shortcuts, Integrated Tools

MikroElektronika 80

mikroPascal PRO for PIC32

Customizing IDE Layout
Docking Windows

You can increase the viewing and editing space for code, depending on how you arrange the windows in the IDE.

Step 1: Click the window you want to dock, to give it focus.

B
E] Binaries
{7 Project level defines
|7 Image Files
--[(7) EEPROM Files
{7 Active Commerts Files
=17 output Files
----- Led.hex
- Lcd.asm

|77 Other Files

Step 2: Drag the tool window from its current location. A guide diamond appears. The four arrows of the diamond point
towards the four edges of the IDE.

81 MikroElektronika

mikoPascal PRO for PIC32

Step 3: Move the pointer over the corresponding portion of the guide diamond. An outline of the window appears in the
designated area.

Step 4: To dock the window in the position indicated, release the mouse button.

Tip : To move a dockable window without snapping it into place, press CTRL while dragging it.
Saving Layout

Once you have a window layout that you like, you can save the layout by typing the name for the layout and pressing
the Save Layout Icon @

To set the layout select the desired layout from the layout drop-down list and click the Set Layout Icon .

To remove the layout from the drop-down list, select the desired layout from the list and click the Delete Layout

Icon lad .

<Default Layout:
Code Lapot

Debug Layout
lsyoutl b

Auto Hide

Auto Hide enables you to see more of your code at one time by minimizing tool windows along the edges of the IDE
when not in use.

- Click the window you want to keep visible to give it focus.

- Click the Pushpin Icon £ on the title bar of the window.

MikroElektronika 82

mikroPascal PRO for PIC32

Project Manager %EB
DR E P

:= | Project Mana
=0 R E
=) Sources EE % = 8
o Led. mpas 55 soun| 3
= - o i E
{7 Binaries R @ i3
7 Project level defines =) Binar ki T
17 Image Files o] =
& o
I EEPROM Files) Imag a
{7 Active Comments Files 7 EEFR &
=0 Cutput Files g 7 Activ 3
T =sow
= L
|2 Other Files i % L
El Okhe
-
v
(3]

When an auto-hidden window loses focus, it automatically slides back to its tab on the edge of the IDE. While a window
is auto-hidden, its name and icon are visible on a tab at the edge of the IDE. To display an auto-hidden window, move
your pointer over the tab. The window slides back into view and is ready for use.

Options

Options menu consists of three tabs: Code Editor, Tools and Output settings.

Code editor

The Code Editor is advanced text editor fashioned to satisfy needs of professionals.

Tools

The mikroPascal PRO for PIC32 includes the Tools tab, which enables the use of shortcuts to external programs, like
Calculator or Notepad.
You can set up to 10 different shortcuts, by editing ToolO - Tool9.

83 MikroElektronika

mikoPascal PRO for PIC32

Options
Editor

M .;.r_ét.a,j Tool Mame: | Motepad

Tool File Mame: | C:AWINDOWS'NOTEPAD.EXE

Parameters:

Macro: | 2uHEX_FILE_MAME Full path and name of the aut... v | Insert |
Shartcut: |F1'| L;]

98 Clear 4l fields

Toal2

Toald

Tool5 dsPICFlazh Option:

[] Clase when finished
Tools

Tool3

Toold

Cutput

Output settings

By modifying Output Settings, user can configure the content of the output files.
You can enable or disable, for example, generation of ASM and List file.

Also, user can choose optimization level, and compiler specific settings, which include case sensitivity, dynamic link for
string literals setting (described in mikroPascal PRO for PIC32 specifics).

Build all files as library enables user to use compiled library (* . emc1) on any MCU (when this box is checked), or for a
selected MCU (when this box is left unchecked).

For more information on creating new libraries, see Creating New Library.

MikroElektronika 84

mikroPascal PRO for PIC32

Options

Output Settings
¥ Generate ASMfle
¥ Include HEX cpcodes
¥ Include ROM constants
¥ Include ROM Addresses
¥ Generake list file
¥ Include debug info
¥ Inchude source ines in output Files

™" Lorg HEX Format

[Case sensitive

I Dynamic link for strineg erals
' Build al files as lbrary

I Bheays buid o files in project

85 MikroElektronika

mikoPascal PRO for PIC32

Integrated Tools

Active Comments Editor

Active Comments Editor is a tool, particularly useful when working with Lcd display. You can launch it from the drop-

down menu Tools > Active Comments Editor or by clicking the Active Comment Editor Icon 4@ from Tools toolbar.

Active Comments Editor
Enter comment narne:

|activeC0mment| |

Active Comment Ackions:
MNew Rename Delete

Propetties:
=l Attributes
Ll

Image Mone
File Mone:
=l Events

OnLeftClick + &l rons
OnRightClick Mone
OnblClick Mone
OnMouseOwver Fone

Iisc:
Add Image To Project

Add File To Project

Save Cancel

X

MikroElektronika

86

mikroPascal PRO for PIC32

ASCII Chart

The ASCII Chart is a handy tool, particularly useful when working with Lcd display. You can launch it from the drop-

down menu Tools > ASCII chart or by clicking the View ASCII Chart Icon | «=. from Tools toolbar.

o
] 1 Z 3 4
1
6 |17 | 18 | 19 | 20
2SF'IZ:!“#Q;
32 | 33 [34 | 35 | 36
o 1 2 3 4
3
45 | 49 | 50 | 51 | &2
4@ABCD
64 | 65 | BB | 67 | 63
5 P 0O R S T
80 | 81 | 82 | 83 | &4
“la b ¢ d
]
95 | 97 | 93 | 99 100
?pqrst
112 | 113 | 114 | 115 | 116
8 € (0|, | F .
125 | 129 | 130 | 131 | 132
ol - . w | o»
9
144 | 145 | 146 | 147 | 148
P i | ¢ | £ | &
160 | 161 | 162 | 163 | 164
1 2 | 3 | 7
B S
176 | 177 | 178 | 179 | 150
CAAAAA
192 1193 | 194 | 195 | 196
DBNEIEIEI
208 | 209 | 210 | 211 | 212
Eé'é‘lééi
224 | 225 | ZE6 | 22V | 225
FEIﬁl‘:ll:’ll':‘l
240 | 241 | 242 | 243 | 244

MUL |SDH|5TX |[ETX [EOT ENQ ACK | BEL | BS | HT

=} i} il i kel

DLE |DC1 |DC2 |DC3 DC4 NAK |SYM | ETB |CAN| EM

21 |22 | 23 | 24 | 25
% & ' ()
37 | 38 | 39 40 | 41
5 6 7 8 0

53 |54 | 55 | 56 | 57
E F G H I

69 | 70 | 71 | 72 | F3
u ¥ w X ¥
g5 | 89
h i

105

1HEX: 0x66
T | 0110 0110 20

165 | 166 | 167 | 165 | 169
181 | 182 | 183 | 184 | 185
197 | 195 | 199 | 200 | 201

213 | 214 | 215 | 216 | 217

4 @ | ¢ | &
229 | 230 | 231 | 232 | 233
6|+ 8 0

245 | 246 | 247 | 245 | 249

LF | ¥T
| 11
SUB |ESC
26 | 27
o+
42 | 43
. H
58 | 59
1 K
4|75
z [
o0 | 91
i k
106 | 107
z {
122 123
5 «
138 | 139
S »
154 | 155
a "
170 | 171
o »
156 | 157
E E
202 | 203
u u
215 | 219
g &8
234 | 235
a | i
250 | 251

108
124
140
156
172
15
1?8
204
220

236

252

109
125
141
157
173
2
1?9
295
2?1
237

253

S0
14

RS
a0
46
g2
78
94
110
126
142
158
174
34
130
206
222
238

254

51
15

us
3t
47
83
7
a5
111
DEL
127
143
155
175
191
207
223

239

255

87

MikroElektronika

mikoPascal PRO for PIC32

EEPROM Editor

The EEPROM Editor is used for manipulating MCU's EEPROM memory. You can launch it from the drop-down menu

Tools > EEPROM Editor.

When you run mikroElektronika programmer software from mikroPascal PRO for PIC32 IDE - project name.hex

file will be loaded automatically while ihex file must be loaded manually.

MikroElektronika EEPROM Editor

oo
anan
oA

VPV IV
VYV IVY
baaadasdiabisihil
FHFYFHFF VYTV
FHFYFVIIVY ¥y

L4
FHY IRV
bidadaadialiiiisl
badibiibibbisibi
bAdabadddatiithil
bidatasdiaiisiiad

MikroElektronika

88

mikroPascal PRO for PIC32

Graphic Lcd Bitmap Editor

The mikroPascal PRO for PIC32 includes the Graphic Lcd Bitmap Editor. Output is the mikroPascal PRO for PIC32

compatible code. You can launch it from the drop-down menu Tools > Glcd Bitmap Editor.

GLCD Bitmap Editor

MikroElektronil

12864 (ot imp, yet)
122%32 (ot i, yet)

4/ GLCI Picture name: banner.bmp
#/ GLCD Model: Toshiba TE963C 240x128

1 —————-

| unsigned char const banmer bmp[3840] = |

¢, o o 0 0 0, 0, 0, 0, 0, 0O,
¢, o o 0 0o 0, 0, 0, 0, 0, 0O,
o, 0, o, 0, 0, o, 0,

255,258,285,255, 255,255,255, 255,255, 255,255, 255, 255,255, 255, 255,
2855,288,285,255,255, 255,255,255, 255,255, 255, 255, 255,255, 128,

89

MikroElektronika

mikoPascal PRO for PIC32

HID Terminal

The mikroPascal PRO for PIC32 includes the HID communication terminal for USB communication. You can launch it
from the drop-down menu Tools > HID Terminal.

& mikroElektronika USE (HID Terminal
]Terminal | Des criptor
HIC Dewices: Info
ABBAHOHE o~
ABBAHOME
mikroE HID Library test El
Dell Premium USB Optical House -
Zommunication
[HID Readsurite Test Send
I~ Append CR ¥ send as Typing
I~ Append LF I~ Send as Murnber
ormat
& AsCI " HER " DEC Clear
HID Read/Write Test -
4 b

Interrupt Assistant

mikroPascal PRO for PIC32 includes the Interrupt Assistant that assist user in configuring interrupts. Output is the code
for the configured interrupt routine. You can launch it from the drop-down menu Tools > Interrupt Assistant.

(%)

Interrupt Assistant

void |inkerrupt |iv|.ﬁ.DC w | ilewel | s 4| ics | w SDFT| 0K

Multi Yeckar, SRS Priaority Lesvel = -1, Yectar Spacing = 32, EB&SE = 9FC0 1000

MikroElektronika 90

mikroPascal PRO for PIC32

Lcd Custom Character

mikroPascal PRO for PIC32 includes the Lcd Custom Character. Output is mikroPascal PRO for PIC32 compatible
code. You can launch it from the drop-down menu Tools > Lcd Custom Character.

MikroElektronika LCD Custom Char Generator 3]

L3 LY])
AR e u E=] =] Q Q Q
5% 10 Save... Load... Fill all Cclear all Invert
Preview

H+E

Font size
@ 5x7 + cursor line

) 5x10 + cursor line

N
(O e
AN
N
C e

CGRAM address

Char:

Char data row:

mikroC PRO | mikroPascal PRO mikroBasic PRO

const char character[] = {0,4,4,31,4,4,0,0};

void CustomChar (char pos_row, char pos_char) {
char 1i;
Led Crd(64) ;
for (i = 0; i<=7; i++) Led Chr CFcharacter[i]):
Led Cwd| LCD RETURM HOME) ;
Led Chr(pos_row, pos_char, 0);

<)) B

e

91 MikroElektronika

mikoPascal PRO for PIC32

Seven Segment Editor

The Seven Segment Editor is a convenient visual panel which returns decimal/hex value for any viable combination you
would like to display on seven segment display. Click on the parts of seven segment image to get the requested value
in the edit boxes. You can launch it from the drop-down menu Tools > Seven Segment Editor or by clicking the Seven

Segment Editor Icon i from Tools toolbar.

seven Segment Editor

Common cathode:

Common anode:

UDP Terminal

The mikroPascal PRO for PIC32 includes the UDP Terminal. You can launch it from the drop-down menu Tools > UDP
Terminal.

MikroElektronika UDP Terminal 3]
=Siekting:
IP Address: |192.168.020.025 | I Connect]

Part: 10001

=Send:

mikroElektronika | b—éﬂndi

Append: | CR I send as byping

LR " end as number

mikroE lekbrorik.a

mikroE lekbrorik.a

MikroElektronika 92

mikroPascal PRO for PIC32

USART Terminal

The mikroPascal PRO for PIC32 includes the USART communication terminal for RS232 communication. You can
launch it from the drop-down menu Tools > USART Terminal or by clicking the USART Terminal Icon ﬂ from Tools
toolbar.

MikroElektronika Usart Terminal

- Repeat sonding

© Support ASCII © Appand New Ling Send ASCII T Repest sending 8 very
one Stop Bit © Send as typing 10003 | miliseconds

[mikroElektroniks i

Send from file

[O)|

mikroElekcronika -

MikroElektronika

93

mikoPascal PRO for PIC32

Active Comments

The idea of Active Comments is to make comments alive and give old fashioned comments new meaning and look.
From now on, you can assign mouse event on your comments and 'tell' your comments what to do on each one. For

example, on left mouse click, open some web address in your browser, on mouse over show some picture and on
mouse double click open some file.

Suppose we are writing a example for a GSM/GPSR module which is connected to the EasyPIC6 and we would like to
provide a photo of our hardware (jumpers, cables, etc.). within the example.

It would also be nice to put some documentation about chip we are using and a GSM module extra board. Now we can
have all those things defined in one single comment using Active Comment Editor.

New Active Comment

When you start Active Comment Editor for the first time (from the View menu, from editor's pop-up menu, or by pressing
Ctrl + Alt + P) you will get an empty editor:

Active Comments Editor 5]
Select Active Comment: [

Active Comment Actions:
Mew [Renamty [mbelete

Properties:

Iisc:

[AddImageTo-Rraiect |

[Adg File To Project J

Save Cancel

By clicking the Mew button you are prompted to enter a name for the comment:

MikroElektronika 94

mikroPascal PRO for PIC32

Active Comments Editor E|
Enter comment name:

|activeC0mment| |

Active Comment Ackions:
New Rename Delete

Properties:

= Attributes
Url
Irmage
File

1= Events
OnLeftClick + Al
OnRightClick,
onbDblClick
OnMousetwver

Misc:
Add Image To Project

Add File To Project

Save Cancel

You can notice that when you start typing a name, properties pane is automatically displayed so you can edit properties

if you wish. A Comment will be is created when you click Save button.
Properties are consisted of two major categories - Attributes and Events.
Attributes can be:

- URL - Valid web address.
- Image - Image has to be previously added to Project (Project Manager > Images).
- File - File has to be previously added to Project (Project Manager > Other Files).

There are four predefined event types you can apply to an Active Comment:

1. OnLeftClick + Alt
2. OnRightClick

3. OnDoubleClick
4. OnMouseOver

95 MikroElektronika

mikoPascal PRO for PIC32

First three event types can have one of the following three actions:

1. OpenUrl - Opens entered URL in default Web browser.

2. OpenFile - Opens a file within a default program associated with the file extension (defined by Windows).
3. None - Does nothing.

The fourth event, OnMouseOver, has only 2 actions:

1. Previewlmage - Shows image when cursor is moved over a comment.
2. None - Does nothing.

Attributes are tightly bounded with events. For example, you can not have OnLeftClick + Alt -> OpenFile if there is no
file attribute set, or if there is no file added to project. The same behavior applies to image attribute.

Let's start editing our Active Comment by entering some valid web address in the URL field:

= Attributes
Ul vy, mikr e, com|
Image
File:
1=l Events
OnLeftClick + Alt
OnRightClick,
OnDblClick
OnMousetver

For every Active Comment a XML file will be created, containing all valid information regarding the Active Comment -
attributes, events, etc. and it is automatically added to Project manager after saving it:

Project Manager FXI
i 9 2 i | [2
=[5, Easy_GSM_GPRS.mpp32
=) sources
Easy_G5SM_GPRS.mpas
IC7) Header Files
E] Binaries
[T Project Level Defines
= 7 Image Files
Easy_:5M_GFRS.jpg
[C=) EEPROM Files
= I Active Camments Files
I- ﬂ activeComment, xml
07 Qutbput Files
|7 Other Files

MikroElektronika 96

mikroPascal PRO for PIC32

You can see the contents of the created XML file by expanding Active Comment Editor:

Active Comments Editor E|
Enter comment narne: <activeComment >
|activeC0mment | sAttributes:>
<Url-www.mikroe. com</Url:>
Active Comment Ackions: <Images></Image>
Newt Rename Relss <Filer</File>
Properties: </attributes:
= Aktributes <EBrents:
Ll v, rrikr e, com| <OnLeftClick:</0nLeftClick=
Image <OnRightClick:</0nRightClick:>
File <0nDh1Click></0nDh1Click>
=) Events <inMouselrer:><;/0nMouselvrer:
onLeftlick + Al
OnRightClick, <_j Events:
onpbiclick </ actireComment -
OniouseCryer

Misc:
Add Image To Project

Add File To Project

Save Cancel

As we mentioned above you can add image or file which are already included in project. If the the desired image or file

aren't added, you can do it directly from here by clicking the | add Image To Project | Or Add File ToProject | button.

97 MikroElektronika

mikoPascal PRO for PIC32

Next file dialog will be opened:

Open

Lok jr: | |39 Images

Y @2 E

GSm”

My Recent
Diocuments

@

Desklop

s
3

My Documents

=
e
]
o
=R
=)
=
@

File name: |Easy_G5M_GPRS

V| ‘ Open J

-

Files of type: | Image Files[".bmp, “.jpg. “png)

v| [Cancel]

My Metwark,

] Open az read-only

There, you should select the desired image to be added. In our example, Easy GSM GPRS. jpg image will be added.

Selected picture is automatically added to the drop down list of the Image field in Active Comment Editor:

Active Comments Editor le
Seleck Ackive Comment:

| arctiveCamment b |

Active Comment Ackions:
New Rename Delete

Properties:

=l Attributes
Lirl ey, mikroe, com
Image
File

=l Events
onLefClick + Al rlone
OnRightClick Mone
OnDbiClick, More
OnMouseCver Fone

Misc:
Add Image To Project

Add File To Project

Save Cancel

MikroElektronika

98

mikroPascal PRO for PIC32

Now, when image has been selected, we can assign an event to it. For example, OnMouseOver will be used for

Previewlmage action, and OnLeftClick + Alt will be assigned to OpenUrl action:

=l Attributes
Url v, mikroe, com
Image Easy_G5SM_GPRS.jpg
File

=l Events

OnLeftClick + Ak Openlrl
OnRightClick. Mone
OnDblClick.

OnMouseCver PreviewImage

Now we can save our changes to Active Comment by clicking the Save button.

Note: Setting file attributes is same as for image, so it won't be explained separately.

Once we have finished creating our active comment, we can notice that it has been added to source file on current caret

position with ac: prefix 'telling' IDE that it is active comment:

|/# ac:activeComment

30

Now let's try it. If you LeftClick+Alt on it, URL in default Web browser will be opened. If you hover the mouse over it,

you will see an Image preview:

l// o activeComment
7

20

40

50

99

MikroElektronika

mikoPascal PRO for PIC32

There is another way to add an active comment to an active project. You can do it simply by typing a comment in old
fashion way, except with ac: prefix. So it would look like this:

I ac:activeComentg Add Comment To Project

0

Notice that when you stop typing, Add Comment To Project button will show. By clicking on it, you will open Active
Comment Editor and comment name will be already set, so you need only to adjust attributes and settings.

After saving you can always edit your active comment by Active Comment Editor, and switch between comments
directly from editor.

If you remove a file from the Project Manager or add an Active Comment File which contains information about the file
which is no longer in project, and hover the mouse over the comment, you will be prompted to either add file to project
or remove event definition from Active Comment for this file:

": File linked to this active comment is missing!
L

whould wou like to add file to a project and make events associated with
in valid , or unlink file From Active Comment?

[V | Show moare info Yes

If you remove active comment file from the Project Manager, you'll receive this message:

y\ Missing a file for this active comment!

Wwould you like to add file to a project, or delete this Active
Commenty

'Z V | Show more info Yes

Click on Yes button you'll prompted for an active comment file:

MikroElektronika 100

mikroPascal PRO for PIC32

Open
Look in: |E‘.~ Easy GSM_GPRS v| Q F @
Y activeComment
{{ activeComment2
My Recent
D ocuments
Desktop
@
My Documents
My Computer
File name: | W | L Open J
L Files of pe: |Active Link. Files(" xmi] A4 | [Cancel]
My Network [] 0pen as read-only

If you click No, comment will be removed from the source code.

Renaming Active Comment

When you click on rename button, you will be prompted to enter new name:

Active Comments Editor [E
Select Active Comment:

‘ activeComment w |

Active Comment Actions:
New Rename Delate

Enter new Active Camment Mame:

Properties:
= Attributes
Lrl ww, rikyoe. com
Image Easy_35M_GPRS.jpg
File: Mone
1=l Events
OnLeftClick + alt Opentrl
OnRightClick, Mone =
OnDblClick Mone

OnMouseCver PreviewlImage

IMisc:
Add Image To Project

Add File To Project

Save Cancel

101

MikroElektronika

mikoPascal PRO for PIC32

Now click again Rename button. Now you have renamed your Active Comment in such a way that its flename, source
code name are changed:

l«"/ ac:activeCopmentRename

30

Deleting Active Comment

Deleting active comment works similar like renaming it. By clicking on delete button, you will remove an active comment
from both code and Project Manager.

MikroElektronika 102

mikroPascal PRO for PIC32

Export Project

This option is very convenient and finds its use in relocating your projects from one place to another (e.g. from your
work computer to your home computer).

Often, project contains complicated search paths (files involved within your project could be in a different folders, even
on different hard disks), so it is very likely that some files will be forgotten during manual relocation.
In order to simplify this, Export Project gives you opportunity to do this task automatically.

To open Export Project, from Project menu select Export Project or hit Ctrl + Alt + E. The following window will
appear:

Export Project E]

Select project ko export:
| oPascal PRO for PIC32\ExamplesiDevelopment Systems|LY32M: waLCD (COG 2x16LC0. mpp32

Select destination folder:

| D:iProject E]|

Export Project & Cancel

In the empty input boxes, current location and the destination folder of the desired project should be entered.

By default, currently active project will be set for export. You can change it any time by clicking the Open Button

Once you have entered the appropriate data, click Export Project button. After exporting is done, and if everything was
OK, you'll receive a message:

Information

i) Project successfully exported!

‘fou have successfully exported the project, Al files From
the project are now copied to "Dt \Project”

Now, Export Project has copied all project files into desired folder and changed project search paths, so you can easily
move the entire folder to another location and run the project.

103 MikroElektronika

mikoPascal PRO for PIC32

Jump To Interrupt
Lets you choose which interrupt you want to jump to.

Requirement: Interrupt routine is included in project.

You can call Jump To Interrupt by selecting Run > Jump To Interrupt from the drop-down menu, or by clicking the Jump

To Interrupt Icon @ , from the Watch Values Window.

Available Interrupts 5]

0360000 ¢ I¥T_CORE_TIMER _WECTOR ~
0001 ¢ I¥T_CORE_SOFTWARE_0_VECTOR
050002 ; I¥T_CORE_SOFTWARE_1_YECTOR
50003 : IvT_EXTERMAL_0_YECTOR

050004 : IvT_TIMER_1_VECTOR,

050005 : I¥T_INPUT_CAPTURE_1_YECTOR
050006 : I¥T_OUTPUT_COMPARE_1_YECTOR
00007 ¢ IvT_EXTERMAL_1_VECTOR

0008 : IT_TIMER_2_VECTOR,

060009 ¢ IYT_INPLT_CAPTURE_2_VECTOR
0004 ¢ I¥T_OUTROT_COMPARE_Z_YECTOR
0008 ¢ IvT_EXTERMAL_2_VECTOR

5000C : ¥T_TIMER_3_YECTOR

050000 : 1¥T_INPLIT_CAPTURE_3_VECTOR
0000E : I¥T_OUTPUT_COMPARE_3_YECTOR
05000F : IvT_EXTERMAL_3_VECTOR

060010 : IvT_TIMER_4_VECTOR,

00011 ¢ IYT_INPUT_CAPTURE_4_VECTOR
00012 ¢ IT_OUTPUT_COMPARE_4_VECTOR
060013 ¢ IvT_EXTERMAL_4_VECTOR

0014 ¢ IT_TIMER_5_VECTOR,

060015 ¢ IYT_INPUT_CAPTURE_S_VECTOR
50016 : IYT_OUTPUT_COMPARE_S_YECTOR
00017 : IT_SPI_1_VECTOR

060018 : IvT_UART_1_YECTOR

060019 ¢ IvT_12C_1_YECTOR

00014 1 T¥T_CHANGE_NOTICE_VECTOR
0001E : IT_ADC_YECTOR

0e001C : IVT_PMP_YECTOR

060010 ¢ I¥T_COMPARATOR_1_YECTOR
e001E ¢ IYT_COMPARATOR 2 VECTOR
e001F ¢ I¥T_SPI_2_VECTOR

050020 : IvT_UART_2_YECTOR

00021 ¢ IT_12C_2_VECTOR

060022 : IVT_FAIL_SAFE_MONITOR_YECTOR
060023 : IVT_RTCC_YECTOR

M2 s T NMA N YWFCTOR

[Jonly used OK Cancel

By checking the Only Used box, you can display only the used breakpoints.

MikroElektronika 104

mikroPascal PRO for PIC32

Regular Expressions

Introduction

Regular Expressions are a widely-used method of specifying patterns of text to search for. Special metacharacters
allow you to specify, for instance, that a particular string you are looking for, occurs at the beginning, or end of a line, or
contains n recurrences of a certain character.

Simple matches

Any single character matches itself, unless it is a metacharacter with a special meaning described below. A series
of characters matches that series of characters in the target string, so the pattern “short” would match “short”
in the target string. You can cause characters that normally function as metacharacters or escape sequences to be
interpreted by preceding them with a backslash ™\ .

For instance, metacharacter “~” matches beginning of string, but “\ ~” matches character “~”, and “\\” matches
"\, etc.

Examples:

unsigned matches string 'unsigned’
\~unsigned matches string ' “unsigned’

Escape sequences

Characters may be specified using an escape sequences: “\n” matches a newline, “\'t” a tab, etc. More generally,
\xnn, where nn is a string of hexadecimal digits, matches the character whose ASCII value is nn.

If you need wide (Unicode) character code, you can use ‘\x{nnnn}’, where ‘nnnn’ - one or more hexadecimal
digits.

\xnn - char with hex code nn

\x{nnnn)- char with hex code nnnn (one byte for plain text and two bytes for Unicode)
\t - tab (HT/TAB), same as \x09

\n - newline (NL), same as \x0a

\r - car.return (CR), same as \x0d

\T - form feed (FF), same as \x0c

\a - alarm (bell) (BEL), same as \x07

\e - escape (ESC) , same as \x1b

Examples:

unsigned\x20int matches 'unsigned iInt' (note space in the middle)
\tunsigned matches "'unsigned' (predecessed by tab)

Character classes

You can specify a character class, by enclosing a list of characters in [], which will match any of the characters from
the list. If the first character after the ““[** is ““/*””, the class matches any character not in the list.

105 MikroElektronika

mikoPascal PRO for PIC32

Examples:

count[aeiou]r finds strings "countar”, "counter”, etc. but not “countbr”, "countcr”, etc.
count[”aeiou]r finds strings “countbr”, "countcr”, etc. but not "countar”, "counter”, etc.

Within a list, the "-" character is used to specify a range, so that a-z represents all characters between ""a’" and "'z",
inclusive.
If you want """ itself to be a member of a class, put it at the start or end of the list, or precede it with a backslash.

If you want "] ", you may place it at the start of list or precede it with a backslash.

Examples:

[-az] matches "a”, "z" and "-*
[az-1] matches "a®, "z" and " -
[a\-z] matches "a”, "z" and " -
[a-z] matches all twenty six small characters from "a" to "z~
[\n-\x0D] matches any of #10,#11,#12 ,#13.
[\d-t] matches any digit, *-~ or "t".

[]1-a] matches any char from "] ".."a".

Metacharacters

Metacharacters are special characters which are the essence of regular expressions. There are different types of
metacharacters, described below.

Metacharacters - Line separators

M - start of line

$ - end of line

\A - start of text

\Z - end of text

. - any character in line

Examples:

~PORTA - matches string * PORTA * only if it's at the beginning of line
PORTAS$ - matches string * PORTA * only if it's at the end of line

~PORTA$ - matches string * PORTA ‘ only if it's the only string in line
PORT . r - matches strings like ‘PORTA’, ‘PORTB’, ‘PORT1" and so on

The “~” metacharacter by default is only guaranteed to match beginning of the input string/text, and the “s”
metacharacter only at the end. Embedded line separators will not be matched by ~ or “s”.

You may, however, wish to treat a string as a multi-line buffer, such that the ™~ will match after any line separator within
the string, and “$” will match before any line separator.

Regular expressions works with line separators as recommended at http://www.unicode.org/unicode/reports/tr18/

MikroElektronika 106

mikroPascal PRO for PIC32

Metacharacters - Predefined classes

\w - an alphanumeric character (including **_*")
\W - a nonalphanumeric character

\d - a numeric character

\D - a non-numeric character

\s - any space (same as [\t \n\r\f])

\'S - a non space

You may use \w, \d and \s within custom character classes.
Example:

routi\de - matches strings like "routile”, "routi6e” and soon, butnot 'routine', 'routime' and
so on.

Metacharacters - Word boundaries

A word boundary (""\b"") is a spot between two characters that has an alphanumeric character ("\w'") on one side,
and a nonalphanumeric character (""\W'*) on the other side (in either order), counting the imaginary characters off the
beginning and end of the string as matching a "\w".

\b - match a word boundary)
\B - match a non-(word boundary)

Metacharacters - lterators

Any item of a regular expression may be followed by another type of metacharacters - iterators. Using this
metacharacters,you can specify number of occurences of previous character, metacharacter or subexpression.

* - zero or more (“greedy”), similar to {0,}

+ - one or more (“greedy”), similar to {1,}

? - zero or one (“greedy”), similar to {0,1}

{n} - exactly n times (“greedy”)

{n,} - atleast n times (“greedy”)

{n,m} - at least n but not more than m times (“greedy”)
*? - zero or more (“non-greedy”), similar to {0,}?

+7? - one or more (“non-greedy”), similar to {1,}?

?7? - zero or one (“non-greedy”), similar to {0,1}?

{n}7? - exactly n times (“non-greedy”)

{n,}7? - atleast n times (“non-greedy”)

{n,m}? - at least n but not more than m times (“non-greedy”)

So, digits in curly brackets of the form, {n,m}, specify the minimum number of times to match the item n and the
maximum m. The form {n} is equivalent to {n,n} and matches exactly n times. The form {n,} matches n or more
times. There is no limit to the size of n or m, but large numbers will chew up more memory and slow down execution.

If a curly bracket occurs in any other context, it is treated as a regular character.

107 MikroElektronika

mikoPascal PRO for PIC32

Examples:

count.*r (- matches strings like 'counter', "countelkjdflkj9r® and “countr*

count.+r - matches strings like “counter®, "countelkjdflkjOr~" but not “countr”

count.?r - matches strings like “counter®, "countar® and “countr”® but not "countelkjor*
counte{2}r - matches string “counteer*

counte{2, }r - matches strings like “counteer®, "counteeer”, "counteeer” etc.
counte{2,3}r - matches strings like “counteer”, or “counteeer” but not “counteeeer”

A little explanation about "greediness". "Greedy" takes as many as possible, "non-greedy" takes as few as possible.
For example, "b+" and "b*" applied to string "abbbbc® return "bbbb*®, "b+?" returns "b*", 'b*2' returns empty
string, "b{2,3}?" returns "bb", "b{2,3}" returns “"bbb".

Metacharacters - Alternatives

You can specify a series of alternatives for a pattern using "'|"" to separate them, so that bit|bat|bot will match
any of "bit", "bat", or "bot" in the target string as would b (i |a]o)t)". The first alternative includes everything
from the last pattern delimiter (" (", " [", or the beginning of the pattern) up to the first *"| ", and the last alternative
contains everything from the last ""|"" to the next pattern delimiter. For this reason, it's common practice to include
alternatives in parentheses, to minimize confusion about where they start and end.

Alternatives are tried from left to right, so the first alternative found for which the entire expression matches, is the
one that is chosen. This means that alternatives are not necessarily greedy. For example: when matching rou| rout
against "routine", only the ""rou’ part will match, as that is the first alternative tried, and it successfully matches the
target string (this might not seem important, but it is important when you are capturing matched text using parentheses.)
Also remember that "|" is interpreted as a literal within square brackets, so if you write [bit|bat|bot], you're really
only matching [biao]|].

Examples:

rou(tine|te) - matches strings “routine” or "route”.

Metacharacters - Subexpressions

The bracketing construct (...) may also be used for define regular subexpressions. Subexpressions are numbered
based on the left to right order of their opening parenthesis. The first subexpression has number “ 1~

Examples:

(int){8, 10} matches strings which contain 8, 9 or 10 instances of the “int”
routi ([0-9]]at)e matches “routiOe”, “routile’, “routine”, “routinne’”, “routinnne” etc.

Metacharacters - Backreferences
Metacharacters \1 through \9 are interpreted as backreferences. \ matches previously matched subexpression #.
Examples:

(.)\1+ matches “aaaa” and “cc”.

(.+)\1+ matches “abab” and “123123~
(L°7]17?) (\d+)\1 matches “13” (in double quotes), or “4~ (in single quotes) or 77 (without quotes) etc.

MikroElektronika 108

mikroPascal PRO for PIC32

Keyboard Shortcuts

Below is a complete list of keyboard shortcuts available in mikroPascal PRO for PIC32 IDE.

IDE Shortcuts

Advanced Editor Shortcuts

F1 Help Ctrl+Space Code Assistant
Ctrl+N New Unit Ctrl+Shift+Space | Parameters Assistant
Ctrl+O Open Ctrl+D Find Declaration
Ctrl+Shift+O Open Project Ctrl+E Incremental Search
Ctrl+Shift+N New Project Ctrl+L Routine List
Ctrl+K Close Project Ctrl+G Goto Line
Ctrl+F4 Close unit Ctrl+J Insert Code Template
Ctrl+Shift+E Edit Project Ctrl+Shift+. Comment Code
Ctrl+F9 Build Ctrl+Shift+, Uncomment Code
Shift+F9 Build All Ctrl+number Goto Bookmark
Ctrl+F11 Build And Program Ctrl+Shift+number | Set Bookmark
Shift+F4 View Breakpoints Ctrl+Shift+l Indent Selection
Ctrl+Shift+F5 Clear Breakpoints Ctrl+Shift+U Unindent Selection
F11 Start mE Programmer TAB Indent Selection
Ctrl+Shift+F 11 Project Manager Shift+TAB Unindent Selection
F12 Options Alt+Select Select Columns
Alt + X Close mikroPascal PRO for PIC32 Ctrl+Alt+Select Select Columns
Basic Editor Shortcuts Alt + Left Arrow Fold Region (if available)

F3 Find, Find Next Alt + Right Arrow | Unfold Region (if available)
Shift+F3 Find Previous Ctrl+Alt+L Convert Selection to Lowercase
Alt+F3 Grep Search, Find In Files Ctrl+Alt+U Convert Selection to Uppercase
Ctrl+A Select All Ctri+Alt+T Convert to Titlecase
Ctrl+C Copy Ctri+T USART Terminal
Ctrl+F Find Ctrl+Q Quick Converter
CtrI+R Replace mikrolCD Debugger and Software Simulator
Ctri+P Print Shortcuts
Ctrl+S Save Unit F2 Jump To Interrupt
Ctrl+Shift+S Save All F4 Run to Cursor
Ctrl+V Paste F5 Toggle Breakpoint
Ctrl+X Cut F6 Run/Pause Debugger
Ctrl+Y Delete Entire Line F7 Step Into
Ctrl+Z Undo F8 Step Over
Ctrl+Shift+Z Redo F9 Start Debugger

Ctrl+F2 Stop Debugger

109

MikroElektronika

mikoPascal PRO for PIC32

Ctrl+F5 Add to Watch List

Ctrl+F8 Step Out

Alt+D Disassembly View

Shift+F5 Open Watch Window
Ctrl+Shift+A Show Advanced Breakpoints

MikroElektronika

110

mikroPascal PRO for PIC32

CHAPTER 3

mikroPascal PRO for PIC32
Command Line Options

Usage: mMPPI1C32._exe [-<opts> [-<opts>]] [<infile> [-<opts>]] [-<opts>]]
Infile can be of *.c, *.emcl and *.pld type.

The following parameters are valid:

-P <devicename> : MCU for which compilation will be done.
-FO <oscillator>: Setoscillator [in MHZ].

-SP <directory> :Add directory to the search path list.

-N <filename> : Output files generated to file path specified by filename.
-B <directory>: Save compiled binary files (* . emc1) to ‘directory’.
-0 : Miscellaneous output options.

-DBG : Generate debug info.

-MSFE : Short message format.

-v : Dynamic link for string literals.

-RA : Rebuild all sources in project.

-1 : Check and rebuild new libraries.

-DL : Build all files as libraries.

-LHF : Generate Long hex format.

-Pr : Project file name.

-EH <filename> : Full EEPROM HEX file name with path.
-HEAP <size>:Heap size in bytes.

-GC : Generate COFF file.

-Pr : Project file name.

-5SA : Enable SSA optimization.

-UICD : ICD build type.

-INTDEEF : Interrupt settings.

-EBASE : Exception base address.

111

MikroElektronika

mikoPascal PRO for PIC32

Example:

mPPIC32.exe -MSF -DBG -p32MX460F512L -Y -DL -011111114 -fo80 -N"C:\Lcd\Lcd.mpp32”
-SP”C:\Program Files\Mikroelektronika\mikroPascal PRO for PIC32\Defs”
-SP”C:\Program Files\Mikroelektronika\mikroPascal PRO for PIC32\Uses”
-SP”C:\Lcd\” “__Lib_Math.emcl” “__Lib_MathDouble.emcl”
“ Lib_System.emcl” “__Lib_Delays.emcl” *“_Lib_LcdConsts.emcl” “_ Lib_Lcd.
emcl” “Lcd.mpas”

Parameters used in the example:

-Mst : Short Message Format; used for internal purposes by IDE.

-DBG : Generate debug info.

~p32MxX460F5121 : MCU PIC32MX460F512L selected.

-V : Dynamic link for string literals enabled.

-DL : All files built as libraries.

-011111114 : Miscellaneous output options.

-f£080 : Set oscillator frequency [in MHz].

-N”C:\Lcd\Lcd.mpp32” -SP”C:\Program Files\Mikroelektronika\mikroPascal PRO for
PIC32\Defs” : Output files generated to file path specified by filename.

-SP”C:\Program Files\Mikroelektronika\mikroPascal PRO for PIC32\Defs” :Add directory
to the search path list.

-SP”C:\Program Files\Mikroelektronika\mikroPascal PRO for PIC32\Uses” :Add directory
to the search path list.

-SP”C:\Lcd\” : Add directory to the search path list.

“Lcd.mpas” Y Lib Math.emcl” ™ Lib MathDouble.emcl” ™ Lib System.emcl” “ Lib
Delays.emcl” “ Lib LedConsts.emcl” “ Lib Led.emcl” : Specify input files.

MikroElektronika 112

mikroPascal PRO for PIC32

CHAPTER 4

mikrolCD (In-Circuit Debugger)

Introduction

The mikrolCD is a highly effective tool for a Real-Time debugging on hardware level. The mikrolCD debugger enables
you to execute the mikroPascal PRO for PIC32 program on a host PIC32 microcontroller and view variable values,
Special Function Registers (SFR), RAM, CODE and EEPROM memory along with the mikrolCD code execution on

hardware.

MikroElektronika

113

mikoPascal PRO for PIC32

If you have appropriate hardware and software for using the mikrolCD select mikrolCD Debug Build Type before
compiling the project.

Project Settings 5]
Elgmbevice
Mame: | P32M:<460F512L w

=g MCU Clack

Frequency: MHz Choose ICD Debug

type if you want
to use mikrolCD
debug.

=1 Buildf Debugger Type

Build Twpe |
) Release () ICD Debug

Debugger
) Software (=) mikrolCD

?

Now, compile the project by pressing Ctrl + F9, or by pressing Build Icon *';5 on Build Toolbar.

Run the mikrolCD by selecting Run > Start Debugger from the drop-down menu or by clicking the Start Debugger
Icon Eﬁ, . Starting the Debugger makes more options available: Step Into, Step Over, Run to Cursor, etc. Line that is

to be executed is color highlighted (blue by default). There is also notification about the program execution and it can
be found in the Watch Window (yellow status bar). Note that some functions take more time to execute; execution is
indicated with "Running..." message in the Watch Window Status Bar.

3 _ .
47 [begin Wiatch Walues 2

! ADPCFG := OXFFFF: :
L] g : text = 'mikroElektronika': E?} EHJ E?:l | vu @ 09 o] | k | é'
50 © & add 38 Remove < Propertiss kg AddAll ke RemoveAll
] 5 ; .
e JomdE () 8 Select variable from list:
= - Led Cmd({ LCD CLEAR) : cext -
- : Lod Cmdi LCD CURSOR OFF) ; Search for variable by assembly name:
_text .!1
= e for i = 1 to 17 do
Peripheral: Freeze
- B begin | s
& - ~ Led Chril, i, text[i-1]):| Name value Address
L 9 end; FPORTE o 0x02C5
° X end. TRISE 0 0x02C6
LATE o Ox02CH
ADPCFG 000 00 Ox0248
bt L.} 00500
Running...

Related topics: mikrolCD Debugger Example, mikrolCD Debug Windows, mikrolCD Debugger Options

MikroElektronika

114

mikroPascal PRO for PIC32

mikrolCD Debugger Options

Debugger Options
Name Description Function | Toolbar
Key Icon
Start Debugger Starts Debugger. F9 Eb:
Stop Debugger Stop Debugger. Ctrl + F2 Er
Run/Pause Debugger | Run/Pause Debugger. F6 I-_EDJ

Executes the current program line, then halts. If the executed
Step Into program line calls another routine, the debugger steps into the F7]
routine and halts after executing the first instruction within it.

Executes the current program line, then halts. If the executed
program line calls another routine, the debugger will not step into

s
Step Over it. The whole routine will be executed and the debugger halts at F8 i
the first instruction following the call.
Step Out Executes all remaining program Ime;sl within the sut?routlne. The F8 0
debugger halts immediately upon exiting the subroutine.
Run To Cursor Executes the program until reaching the cursor position. Ctrl + F8]
Toggle Breakpoint Toggle breakpoints option sets new breakpoints or removes those F5 =

already set at the current cursor position.

Related topics: Run Menu, Debug Toolbar

115 MikroElektronika

mikoPascal PRO for PIC32

mikrolCD Debugger Example

Here is a step-by-step mikrolCD Debugger Example.

Step No. 1

First you have to write a program. We will show how the mikrolCD works using this example:

program Lcd Test;

// LCD module connections

var LCD RS
var LCD_EN
var LCD_ D4
var LCD D5
var LCD D6
var LCD_D7

shit
shit
shit
shit
shit
shit

at
at
at
at
at
at

var LCD RS Direction
var LCD EN Direction
var LCD D4 Direction
var LCD D5 Direction
var LCD D6 Direction
var LCD D7 Direction
// End LCD module connections

LATDO bit;
LATD1 bit;
LATBO bit;
LATB1 bit;
LATB2 bit;
LATB3 bit;

sbit at TRISDO bit;
sbit at TRISDI bit;
sbit at TRISBO bit;
sbit at TRISBI bit;
: sbit at TRISB2 bit;
: sbit at TRISB3 bit;

var text : array[l6] of char;
i : byte;
begin
ADPCFG := OxXFFFF;
text := ‘mikroElektronika’;
Led Init ()

Lcd Cmd(_LCD CLEAR) ;
Led Cmd (LCD_CURSOR OFF) ;

for i :=

Lcd Chr (1,

end.

1 to

17
i,

do
text[i-11);

MikroElektronika

116

mikroPascal PRO for PIC32

Step No. 2

After successful compilation and MCU programming press F9 to start the mikrolCD. After the mikrolCD initialization a
blue active line should appear.

Select variable from list:
text

V| Peripherals Freeze

Yalue Address

PC= 0x0002E0 0,00 us

We will debug the program line by line. Pressing [F8] we are executing code line by line. However, it is not recommended
that user does not use Step Into [F7] and Step Over [F8] over Delays routines and routines containing delays. Instead
use Run to cursor [F4] and Breakpoints functions.

All changes are read from MCU and loaded into Watch Window. Note that TRISB changed its value from 255 to 0.

Led Init(): 2

Select variable from list:
text

_text

(V| Peripherals Freeze

Yalue Address

PC= 0x0002E4 0.00 us

117 MikroElektronika

mikoPascal PRO for PIC32

Step Into [F7], Step Over [F8] and Step Out [CtrI+F8] are mikrolCD debugger functions that are used in stepping mode.
There is also a Real-Time mode supported by the mikrolCD. Functions that are used in the Real-Time mode are Run/
Pause Debugger [F6] and Run to cursor [F4]. Pressing F4 executes the code until the program reaches the cursor

position line.
@ 47 H hegin
ADPCFG := OxFFFF:
- g text := 'mikroElektronika’':
50
L - Led Init():
(-]
=
@ - for i := 1 to 17 do
== begin
° . . Led Chril, i, text[i-1]):
@ - end;
- g end.

Wifatch Yalues =
Zh B By 2o @ oo el | @ = oJu
q‘i Add ¥ Remove < Properties Iy Add All Iz Remove All
Select variable from list:
text -
Search for variable by azzembly name:
_test &)
Peripherals Freeze
Mame Yalue Address
PORTE 1] 0x02C3
TRISE o Ox02C6
LATE 1 Ox02CH
ADPCFG 0xFF FF Ox0Z245
text ik 00800
PC= 0x000204 65.55 ms

Run(Pause) Debugger [F6] and Toggle Breakpoints [F5] are mikrolCD debugger functions that are used in the Real-
Time mode. Pressing F5 marks the line selected by the user for breakpoint. F6 executes code until the breakpoint
is reached. After reaching the breakpoint Debugger halts. Here in our example we will use breakpoints for writing
“mikroElektronika” on Lcd char by char. Breakpoint is set on Lcd_Chr and the program will stop everytime this function
is reached. After reaching breakpoint we must press F6 again to continue the program execution.

@ 47 H hegin
| ADPCFG := OxFFFF;
= = text := 'mikroElektronika’;
50
. | Led Init():
e . Led Cmdi LCD CLEAR) ;
- | Led Cwd{_LCD_CURSOR_OFF) ;
=1
& 57
(]
@

Wifatch Yalues =
ENENE R N E| Ju
q‘i Add ¥ Remove < Properties Iy Add All Lz Remove All
Select variable from list:
text -
Search for variable by azzembly name:
_test &)
Peripherals Freeze
Mame Yalue Address
PORTE 1] 0x02C3
TRISE o Ox02C6
LATE 12 Ox02CH
ADPCFG 0xFF FF Ox0Z245
text ik 00800
PC= 0x0002E2 71.06 ms

MikroElektronika

118

mikroPascal PRO for PIC32

Breakpoints are divided into two groups: hardware and software breakpoints. The hardware breakpoints are placed
in the MCU and they provide fastest debugging. Number of hardware breakpoints is limited to 8 (6 instruction, 2
data). If all hardware brekpoints are used, then the next breakpoint will be software breakpoint. These breakpoints are
placed inside the mikrolCD and simulate hardware breakpoints. Software breakpoints are much slower than hardware
breakpoints. These differences between hardware and software breakpoints are not visible in the mikrolCD software
but their different timings are quite notable. That’'s why it is important to know that there are two types of breakpoints.

The picture below demonstrates step-by-step execution of the code used in above mentioned examples.

. FFFRFRERFERREIE

Common Errors:

- Trying to program the MCU while the mikrolCD is active.
- Trying to debug Release build version of the program with the mikrolCD debugger.
- Trying to debug program code which has been changed, but has not been compiled and programmed into the MCU.
- Trying to select line that is empty for Run to cursor [F4] and Toggle Breakpoints [F5] functions.
- Trying to debug MCU with mikrolCD while Watch Dog Timer is enabled.
- Trying to debug MCU with mikrolCD while Power Up Timer is enabled.
- Trying to Step Into [F7] the mikroPascal PRO for PIC32 Library routines. Use Step Over [F8] command for
these routines.
- It is not possible to force Code Protect while trying to debug MCU with mikrolCD.
- Trying to debug MCU with mikrolCD with pull-up resistors set to ON on RB6 and RB7.

Related topics: mikrolCD Debugger, mikrolCD Debug Windows, mikrolCD Debugger Options

119 MikroElektronika

mikoPascal PRO for PIC32

mikrolCD Debugger Windows
Debug Windows

This section provides an overview of available Debug Windows in mikroPascal PRO for PIC32:

- Breakpoints Window

- Watch Values Window

- RAM Window

- Stopwatch Window

- EEPROM Watch Window
- Code Watch Window

Breakpoints Window

The Breakpoints window manages the list of currently set breakpoints in the project. Doubleclicking the desired
breakpoint will cause cursor to navigate to the corresponding location in source code.

In situations when multiple breakpoints are used within the code, it is sometimes handy to enable/disable certain
breakpoints. To do this, just check/uncheck the desired breakpoint using the checkbox in front of the breakpoint’s
name.

Breakpoints 3]
Enable/Line File Mame
27 LedBlinking. mpas
34 LedElinking. mpas
36 LedBlinking. mpas
37 LedElinking. mpas
39 LedBlinking. mpas

Watch Values Window

Watch Values Window is the main Debugger window which allows you to monitor program execution. To show the
Watch Values Window, select Debug Windows > Watch from the View drop-down menu.

The Watch Values Window displays variables and registers of the MCU, with their addresses and values. Values are
updated along with the code execution. Recently changed items are coloured red.

There are two ways to add variable/register into the watch list:

- by its real name (variable’s name in program code). Just select wanted variable/register from Select
variable from list drop-down menu and click the ‘i Add button.
- by its name ID (assembly variable name). Simply type name ID of the variable/register you want to

display into Search for variable by assemby name box and click the * Add button.

MikroElektronika 120

mikroPascal PRO for PIC32

Also, it is possible to add all variables in the Watch Values Window by clicking = g Add All button.

To remove a variable from the Watch Values Window, just select the variable that you want to remove and then click
the 9@ Remaove button, or press the Delete key.

It is possible to remove all variables from the Watch Values Window by clicking i Remawe &l button.

You can also expand/collapse complex variables i.e. struct type variables, strings, etc, by clicking the appropriate
button ([+] or[=]) beside variable name.

Watch Yalues 3]
E?} EJJE%J GO owy o0f o] | @ r@ 0O
* Add P Remove <) Properties @ Add All '\‘3-]- Remove All
Select variable from list:
WREGL v|
Search for variable by assembly name:
|_WREGT
Marme Walue Address
ADPCFRG 0xFF FF 0x0248
S L) 0x0808
[a] ‘m %0508
[1] i 0x0309
2] K %0504
[3] v 0x0306
[4] o 0%050C
[5] E %0800
[6] o 0%050E
i 3 0x0834
WREG Ox05 34 00000
WREGD 2100 00000
WREGL 1 Ox0002
PC= 0x00025E 655,99 ms

Double clicking a variable or clicking the ! Properties button opens the Edit Value window in which you can assign a
new value to the selected variable/register. Also, you can choose the format of variable/register representation between

decimal, hexadecimal, binary, float or character. All representations except float are unsigned by default. For signed
representation click the check box next to the Signed label.

[D] Edit Value: PORTB
|]

Representakion

(&) Dec OHex)Bin) Float O Char

[] signed oK Cancel

An item's value can also be changed by double clicking item's value field and typing the new value directly.

121 MikroElektronika

mikoPascal PRO for PIC32

RAM Window

The RAM Window is available from the drop-down menu, View > Debug Windows > RAM.

The RAM Window displays the map of MCU’s RAM, with recently changed items colored red. The user can edit and
change the values in the RAM window.

mikrolCD Specific: RAM window content will be written to the MCU before the next instruction execution.

nulm|02|03|n4|05|us|o?|ualuglun|nB|nc|nD|DE|uF|nSCII |2

070 0O 00 00 OO0 00 OO0 | OO0 | OO0 00 00 00 00 00 00 00 | 00 | oeeeeeaeieiaann
oFa0y oo oo Juli} Juli} Juli] i} oo uls} oo | oo oo i} oo oo oo O0 | cevvenin e
07AD | o0 oo Juli} Juli} Juli] i} oo uls} oo | oo oo i} oo oo oo O0 | cevvenin e
o7e0y 00 oo Juli} Juli} Juli] i} oo uls} oo | oo oo i} oo oo oo O0 | cevvenin e
070 00 00 00 00 00 00 OO0 0D 0O 00 00 00 00 00 | 00 | 00 cceereaeaeeeaas
o7p0f 00 00 00 00 00 00 Q0 0D 00 00 00 00 00 00 | 00 | 00 cceereaeaeeeaas
O7EQ| 00 | 00 00 00 00 00 00 |00 0O 00 00 00 00 00 00 | 00 | ceeeenaaeaiiaaas
O7F0| 00 | 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 | caeeeeeeaeiaenn
0800) 4C B3 64 34 62 69 | 74 00 6D | 69 6B | 72 | 6F 45 00 6D | Led4bit.mikroE
0810 69 BB 72 6F | 45 | 6C | 65 6B 74 | 72 6F | 6E | 69 6B 61 00 | ikroElektronike
ozn| 45 61 73 | 79 64 73 S0 49 | 43 | 3 00 o0 o0l | o0 | oc | 03 EasydsPIC4.. =
0g30| OO | O0 OO0 OO0 O3 OD2 A6 02 OO0 00 13 02z 00 OO0 3® | Ol

03404 00 oo Juli} Juli} Juli] i} oo uls} oo | oo oo i} oo oo oo O0 | cevvenin e
0350 00 00 00 00 00 00 OO0 | OO0 OO 00 90 00 00 00 00 | 00 | ceeeeeaeeiaenn
0se0| 00 00 00 00 00 OO0 00 |00 0O 00 00 00 00 00 00 | 00 | ceeeeeeaeeiaenns

€

Stopwatch Window

The Software Simulator Stopwatch Window is available from the drop-down menu, View > Debug Windows >
Stopwatch.

The Stopwatch Window displays a Current Count of cycles/time since the last Software Simulator action.
Stopwatch measures the execution time (number of cycles) from the moment Software Simulator has started and can
be reset at any time.

Delta represents the number of cycles between the lines where Software Simulator action has started and ended.

Watch Clock X
Cyiles: Time:
Current Counk; | 2,103,943,273 105,20 5
Delta: 80,581,413 404407 ms
Skopwatch: 2,103,943,273 105197.16 ms
Reset To Zero
Clock: a0 MHz

MikroElektronika 122

mikroPascal PRO for PIC32

Notes:

- The user can change the clock in the Stopwatch Window, which will recalculate values for the latest specified

frequency.

- Changing the clock in the Stopwatch Window does not affect actual project settings — it only provides a simulation.

- Stopwatch is available only when Software Simulator is selected as a debugger.

EEPROM Watch Window

Note: EEPROM Watch Window is available only when mikrolCD is selected as a debugger.

To show the EEPROM Watch Window, select Debug Windows > EEPROM from the View drop-down menu.

The EEPROM Watch Window shows current content of the MCU's internal EEPROM memory.

There are two action buttons concerning the EEPROM Watch Window:

Read EEPROM

Write EEPROM

- Writes data from the EEPROM window into MCU's internal EEPROM memory.

EEPROM Watch 3]
Read EEPROM Write EEPROM

Dulm|02|03|Dqlusloslo?lDB|DQlUA|UB|UC|UD|0E|0F|A5CH |3

0320\ FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF |FF FF FF | FF | FF | FF | FF | FF | FF | FF B

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

E FF | FF | FF FF FF | FF | FF FF FF | FF | FF | FF | FF | FF | FF | FF

ﬁ 00 00 00 00 00 00 00 00 00 |00 | 00 00 00 00 | OO0 00 ceeeeccieeenens

E 00 |00 | o) 00 00 |00 00 00 00 00 00 00 00 | 00 00 00 e

E 00 00 00 00 00 OO0 00 00 00 |00 | 00 00 00 00 | OO0 00 ceeeeeieiieiecens

E 00 |00 | o) 00 00 |00 00 00 00 00 00 00 00 | 00 00 00 e

E 00 00 D00 D0 00 OO0 OO0 00 00 |00 | 00 00 00 OO0 | OO0 00 eeeeveciceenens

E 00 00 00 00 00 OO0 00 00 00 |00 | 00 00 00 00 | OO0 00 ceeeeeieiieiecens

E 00 00 00 00 00 00 00 00 00 |00 | 00 00 00 00 | OO0 00 ceeeeccieeenens

E 00 00 D00 D0 00 OO0 OO0 00 00 |00 | 00 00 00 OO | OO0 OO cevevriririeiens

E 00 |00 | o) 00 00 |00 00 00 00 00 00 00 00 | 00 00 00 e

E 00 00 00 00 00 00 00 00 00 | 00 | 00 00 00 00 | 00 00 ceeeeeieieeeeees

E 00 00 00 00 00 OO0 00 00 00 |00 | 00 00 00 00 | OO0 00 ceeeeeieiieiecens

NdRN .] i i .] i i .] i N .] i nn ol :

STATUS: Idie

- Reads data from MCU's internal EEPROM memory and loads it up into the EEPROM window.

123

MikroElektronika

mikoPascal PRO for PIC32

Code Watch Window

Note: Code Watch Window is available only when mikrolCD is selected as a debugger.
To show the Code Watch Window, select Debug Windows > Code from the View drop-down menu.

The Code Watch Window shows code (hex format) written into the MCU.

There is one action button concerning the Code Watch Window:

- Reads code from the MCU and loads it up into the Code Window. Code reading is resources

consuming operation so the user should wait until the reading is over.

Also, you can set an address scope in which hex code will be read.

CODE Watch X

Address Scope

oooaon | | oogaao| |]

00|02|04|06|08|0A|0C|DE|ASCII 4

0200 | A7SOI0 | ABZZCA | 4TODE0 | AG4010 | ASO2CA | AP40I0 | ABO2CA | 20@BCO | <DLE>PSE™ .G <DLES

0210 | ABO010 | AGOZDE | AFOOI0 | AQDZDE | O7FF96 | 470060 | A63010 | AgezCA | <DLE= .| O <5TH=" <Ol

0zz0 ATIO0L0 | ABGECA 470060 ABz010 AS42CA A7z010 AG42CA 470060 <DLE=D5EL" " .G <DL

0230 AGLO0L0 | ASZECA A710L0 AGZ2CA 470060 ABDOL0 AQ02CA AFOOL0 <DLE> <DLE>| E"@ <D

0240 ABD2CA | Z085C0 ABDOL0 AG0ZDE AFOOL0 AS0ZDE O7FF7C 2058C0 E «3Ta=" & "<5PCs <D

0250 ABDOL0 FF0002 O7FF&4 FF0001 O7FFE6 Fas000 0&0000 Faoooz <DLE= .| <5TH= Fd ¥

0z60 FF000F 200500 SFEF40 FF0019 20000 SFEF40 30016 200940 <5 .7, <BSx<SPCx €

0270 SFEF40 FF0013 200040 SFEF40 30010 200500 SFEF40 370000 @ & <DC3= .7 @ <CR=

0250 STBE4E E10061 3ZFFEE STBE4E E10082 3ZFFEE STBE4E E10083 M —a.af%zN —b.4

0290 3ZFFEE STBE4E E10064 3ZFFEE IFFFFO 9TBE3E SO00EL S7006s | T¥EM —d .ATHZa%7 :

0zA0 405010 SFEF40 FalFE0 O7FF9E B1002F 2058C0 Alooio EFZ000 <DLE= €@ @ i¥ £ <S>

0ZB0 950700 STBSAE 470060 405010 EQD410 32000C STBSAE 470060 . =BELL="@® ,—" .G <l

0zCo 405010 Fa4010 FES000 FalFE0 O7FF32 B1002F 200011 470060 <DLE= €@ <DLE= @ .1

0200 | 408810 | SYFFEF | 2088CO | AOOD10 | FASDO0 | 060000 | FAOOOZ | EFzo00 | <DLE> "@i97 A "=SPC

0ZED 954700 S0400E E10468 310009 20010 FalFE0 O7FF7E B1002F LG <50 @0 h <EOT:

0zF0 O7FF31 B3C011 470060 402510 ITFFF4 Fas000 0&0000 Faoooz 1 §<BELL> <DC1= A2

0300 EFZ000 954700 S0400E E10468 310009 200180 FalFE0 07FF&7 L €5PCH L G7 <50 @0

0310 B1002F O7FF20 B3C011 470060 402510 ITFFF4 Fas000 0&0000 { .+ <3PC= §<BELL> <C

0320 2088EF 20FFFO B7ADZ0 200000 B7AD34 200040 BY2044 FAO00D | T7<SPC> 8 §<5PC> <5F

0330 020308 000000 ZFFFFO BFAZAS O7FFID 200020 FalFE0 O7FF4F @ <ETH=<5Th=. . 8§

0340 B1002F 208610 FalFE0 200080 FalFE0 200010 FalFE0 O7FFE7 .t <DLE> T<5PCx € <

0350 BE100&F 2086590 FalFE0 200080 FalFE0 200020 FalFE0 O7FF7F 0% O t<5PCx € <U5>

0360 BE100&F Z00CCE 273957 EDZ00E 3AFFFE EDz010 SAFFFC 200010 0 +E <FFe<3pCs+ 0

0370 FalFE0 O7FF35 B1002F 208700 FalFE0 200010 FalFE0 200010 | € <US=x 5 $<BELL> [.+

0380 FE1FE0 O7FF&0 B1006F 208510 FE1FE0 200050 FE1FE0 200020 £ <US=xmy<BELL=0 .- b
W >
STATUS: Idle

MikroElektronika 124

CHAPTER 5

Software Simulator Overview

mikoPascal PRO for PIC32

Software Simulator

The Source-level Software Simulator is an integral component of the mikroPascal PRO for PIC32 environment. It is

designed to simulate operations of the Microchip PIC32 MCUs and assist the users in debugging code written for these
devices.

Upon completion of writing your program, choose Release build Type in the Project Settings window:

Project Settings 5]

Mame: |P32M<460F5121 L
e

Choose Release type i

if you want to use F'eq"'e"c"" HHz

software simulator
1=1 Buildf Debugger Type -

EBuild Twpe
() Release () ICD Debug

Debugger

(&) Software) mikroICD

After you have successfuly compiled your project, you can run the Software Simulator by selecting Run > Start
Debugger from the drop-down menu, or by clicking the Start Debugger Icon E?} from the Debugger Toolbar.

Starting the Software Simulator makes more options available: Step Into, Step Over, Step Out, Run to Cursor, etc. Line
that is to be executed is color highlighted (blue by default).

Note: The Software Simulator simulates the program flow and execution of instruction lines, but it cannot fully emulate
PIC32 device behavior, i.e. it doesn’t update timers, interrupt flags, etc.

Related topics: Software Simulator Debug Windows, Software Simulator Debugger Options

MikroElektronika

126

mikroPascal PRO for PIC32

Software Simulator Debug Windows

Debug Windows
This section provides an overview of available Debug Windows in mikroPascal PRO for PIC32:

- Breakpoints Window

- Watch Values Window

- RAM Window

- Stopwatch Window

- EEPROM Watch Window
- Code Watch Window

Breakpoints Window

The Breakpoints window manages the list of currently set breakpoints in the project. Doubleclicking the desired
breakpoint will cause cursor to navigate to the corresponding location in source code.

In situations when multiple breakpoints are used within the code, it is sometimes handy to enable/disable certain
breakpoints. To do this, just check/uncheck the desired breakpoint using the checkbox in front of the breakpoint’s
name.

Breakpoints X
Enable/Line File Mame
27 LedElinking. mpas
34 LedBlinking. mpas
36 LedBlinking. mpas
37 LedElinking. mpas
39 LedBlinking. mpas

Watch Values Window

Watch Values Window is the main Debugger window which allows you to monitor program execution. To show the
Watch Values Window, select Debug Windows > Watch from the View drop-down menu.

The Watch Values Window displays variables and registers of the MCU, with their addresses and values. Values are
updated along with the code execution. Recently changed items are coloured red.

There are two ways to add variable/register into the watch list:

- by its real name (variable's name in program code). Just select wanted variable/register from Select
variable from list drop-down menu and click the = Add button.
- by its name ID (assembly variable name). Simply type name ID of the variable/register you want to

display into Search for variable by assemby name box and click the ﬂi Add button.

127 MikroElektronika

mikoPascal PRO for PIC32

Also, it is possible to add all variables in the Watch Values Window by clicking = I Add All | button.

To remove a variable from the Watch Values Window, just select the variable that you want to remove and then click
the x Remowe button, or press the Delete key.

It is possible to remove all variables from the Watch Values Window by clicking f. Remaowve All button.

You can also expand/collapse complex variables i.e. struct type variables, strings, etc, by clicking the appropriate
button ([+] or[=]) beside variable name.

Watch Yalues 5]
Eh 2h 2 | o0 % o el ERETE |
% Add 9 Remove < Properties i AddAll kgl Remove All
Select vanable from list:
WEEGL v|
Search for variable by assembly name:
|_WREGT
Mame Walue Address
ADPCFG 0xFF FF Ox0Z45
S kxtd 1.} 00808
[a] m' %0505
[1] i 00809
[2] K %0504
[a] [00308
[4] o 050500
[5] E 00300
[8] ar 0%050E
i 3 Ox0534
WREG 005 34 00000
WREGD 2100 00000
WREGL 1 0x0002
PC= 0x00025E F655,99 ms

Double clicking a variable or clicking the < Properties button opens the Edit Value window in which you can assign a

new value to the selected variable/register. Also, you can choose the format of variable/register representation between
decimal, hexadecimal, binary, float or character. All representations except float are unsigned by default. For signed
representation click the check box next to the Signed label.

[Edit Value: PORTB
|]

Representation

(&) Dec () Hex C)Bin C)Float O Char

[signed 0K Cancel

An item's value can also be changed by double clicking item's value field and typing the new value directly.

MikroElektronika 128

mikroPascal PRO for PIC32

RAM Window

The RAM Window is available from the drop-down menu, View > Debug Windows > RAM.

The RAM Window displays the map of MCU’s RAM, with recently changed items colored red. The user can edit and
change the values in the RAM window.

mikrolCD Specific: RAM window content will be written to the MCU before the next instruction execution.

RLAM |

| 0OE | oF |ASCII |’\

o
o

UDlDl|02|03|04|05|06|D?|08|09|DA|DB|DC

o700 00 00 00 00 00 00 00 |00 0O 00 00 00 00 00 00 | 00 | ceeeeeaeeiaens
07900 00 | 00 00 00 00 00 00 |00 OO 00 00 00 00 00 00 | 00 | ceeeenaaiaiiaaas
o7p0f 0O 00 00 00 00 00 Q0 0D 0O 00 00 00 00 00 | 00 | 00 veeeraaiaaaniaaas
07800 00 | 00 00 00 00 OO0 00 |00 OO 00 00 00 00 00 00 | 00 | caeeeeeaeaeiaann
070y 00 00 00 00 00 00 Q0 0D 0O 00 00 00 00 00 00 | 00 ceeeeiieaieenaans
o7pOf 00 00 OO0 00 00 00 Q0 0D 00 00 | 00 00 00 00 00 | 00 ceeeeiieaeenaaan
O7E0f 00 00 OO0 | 0O 00 | OO0 OO0 00 00 00 00 | 00 00 00 00 00 | ceeeeeeeaaeaaaan
O7F0f 00 00 OO0 | 00O 00 | OO0 OO0 00 0D 00 00 | 00 00 00 00 00 | ceeeeeieaaeaaan
oson| 4C 63 B4 34 62 B9 T4 00 6D | 83 BB | 72 | 6F | 45 00 &b Lcd4bit.mikroE
osio] &9 <15 Tz &F 45 <l 65 6B 74 Fis aF GE] 5} 6l o0 ikroElektronikes
0520 45 Bl 73 79 64 73 50 49 43 34 oo oo o1 uli} o 03 EasydsPIC4.. < 0
0530 00 oo oo i) 05 0z AG 0z uli] oo 15 0z i) uli} 36 01

03400 00 00 00 00 00 OO0 00 |00 OO 00 00 00 00 00 00 | 00 | caeeeeaeaeiaann
03500 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 | 00 | caeeeeeaeaeiaenn
03600 00 00 00 00 00 OO0 OO0 | OO0 00 00 00 00 00 00 00 | 00 | coeeeeeaeaiaaan

£

Stopwatch Window

The Software Simulator Stopwatch Window is available from the drop-down menu, View > Debug Windows >
Stopwatch.

The Stopwatch Window displays a Current Count of cycles/time since the last Software Simulator action.
Stopwatch measures the execution time (number of cycles) from the moment Software Simulator has started and can
be reset at any time.

Delta represents the number of cycles between the lines where Software Simulator action has started and ended.

Watch Clock =
Cyles: Time:
Current Count: |2,103,943,273 105.20 5
Delta: 80,551,413 4044 .07 ms
Stopwatch: 2,103,943,273 10519716 ms
Reset To Zero
Clock: a0 MHz

129 MikroElektronika

mikoPascal PRO for PIC32

Notes:

- The user can change the clock in the Stopwatch Window, which will recalculate values for the latest specified

frequency.

- Changing the clock in the Stopwatch Window does not affect actual project settings — it only provides a simulation.

- Stopwatch is available only when Software Simulator is selected as a debugger.

EEPROM Watch Window

Note: EEPROM Watch Window is available only when mikrolCD is selected as a debugger.

To show the EEPROM Watch Window, select Debug Windows > EEPROM from the View drop-down menu.
The EEPROM Watch Window shows current content of the MCU's internal EEPROM memory.

There are two action buttons concerning the EEPROM Watch Window:

Read EEPROM

Write EEPROM

- Reads data from MCU's internal EEPROM memory and loads it up into the EEPROM window.

- Writes data from the EEPROM window into MCU's internal EEPROM memory.

EEPROM Watch 3]
Read EEPROM Write EEPROM
Dmlm||32|n3|D4|DE|D&|D7|DB|D9|DA|DB|DC|DD|DE|DF|ASCII |2
0320| FF | FF | FF | FF FF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FF FF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FFFF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF B
E FF | FF | FF | FFFF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FFFF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FFFF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FFFF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FFFF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FFFF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FFFF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FFFF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FFFF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FFFF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
E FF | FF | FF | FF FF | FF | FF | FF | FF | FF FF | FF | FF | FF | FF | FF
ﬁ 00 | 00 |00 00 00 00 00 | 00 |00 00 00 00 | 00 00 | @0 00 | eeeeeeeiiiiinnn
E 00 | 00 |00 00 00 00 00 | 00 00 00 00 00 00 00 | @0 00 | ceeeeeeeiiiiinn
E 00 |00 |00 00 00 OO0 00 00 00 00 00 00 | 00 00 | 00 00 | eeeeeseiiiiinnn
E 00 00 (00 00 00O OO0 00 OO |00 OO0 00 OO 00 OO0 |00 00
E 00 00 (00 00 00O OO0 00 OO |00 OO0 00 OO 00 OO0 |00 00
E 00 00 (00 00 00O OO0 00 OO |00 OO0 00 OO 00 OO0 |00 00
% 00 00 00 00 00 00 00 00|00 00 00 00 00 00 00 00 ..
E 00 | 00 |00 00 00 00 00 | 00 |00 00 00 00 | 00 00 | @0 00 | eeeeeeeeinionnn
% 00 | 00 |00 00 00 00 00 | 00 |00 00 00 00 | 00 00 | @0 00 | eeeeeeeeinionnn
E 00 00 |00 00 00 00 00 00 |00 00 00 00 00 00 00 00 e
E 00 | 00 |00 00 00 00 00 | 00 |00 00 00 00 | 00 00 | @0 00 | eeeeeeeeinionnn
v

naend nn | on | o | an

nn

nn

an_ | o nn

on o0l on o0 on | on | nn

STATLS: Idie

MikroElektronika

130

mikroPascal PRO for PIC32

Code Watch Window

Note: Code Watch Window is available only when mikrolCD is selected as a debugger.

To show the Code Watch Window, select Debug Windows > Code from the View drop-down menu.

The Code Watch Window shows code (hex format) written into the MCU.

There is one action button concerning the Code Watch Window:

consuming operation so the user should wait until the reading is over.

Also, you can set an address scope in which hex code will be read.

CODE Watch ®
Address Scope
| oooooo || oosoon | []
00 | 02 I 04 06 08 04 0c 0E I ASCIT ~
0200 | A7S010 | ABZ2CA | 470060 | AG4010 | ASOZCA | AF4010 | ABDZCA | 2088C0 | <DLE=PSE" .G <DLES
0210 | AGO010 | ABOZDE | AFOOI0 | AQOZDE | O7FF96 | 470060 | A63010 | A962CA | <DLE® .| {0 <S5TH=" <DL
0220 | A73010 | ABE2CA | 470060 | AGZOI0 | AS42CA | AF2010 | AB42CA | 470060 | <DLE=05EbT .G <DL
0230 | AGIOAD | AS22CA | ATIOND | AS22CA | 470060 | AGODID | ASO2CA | A70010 | <DLE> <DLE>|E'® <Dl
0240 | ABOZCA | 2088C0 | AGOO10 | AGOZDE | A7OOI0 | AS0ZD6 | OFFFTC | z0Baco | E <STH:" A T<SPC: <D
0250 | AG0010 | 370002 | OFFFe4 | 370001 | O7FFE6 | FABOO0 | 060000 | FADOOZ | <DLE: .| <SR Fd§<
0260 | 37000F | z00s00 | 9FEF40 | 370019 | 200C00 | 9FEF40 | 370016 | 200940 | <S0: 7. <B5=<SPC:E
0270 | 9FBF40 | 370013 | 200040 | OFEF40 | 370010 | 200800 | OFBF40 | 370000 | @& <DC3: 7@ <R
0230 | 97BE4E | E10061 | G2FFEE | 97BG4E | E10062 | 32FFEE | 97BE4E | E10063 | M —a 192N —b .3
0290 | 32FFEE | 97BR4E | E10064 | 32FFEE | 37FFF0 | 97BR3E | SOOOEL | S7o0es | T9EM —d AT92ayT
02A0 | 408010 | SFEF40 | 7EIFE0 | OFFFSE | BIOOZF | 20880 | Al0010 | EFZOO0 | <DLE® €@ @iV E <USk
0260 | 980700 | 97BBAE | 470060 | 408010 | EOO410 | 320000 | 97BEAE | 470060 | . <BELL="® — .G <l
o2c0 | 408010 | Fe4010 | FBSOO0 | FEIFE0 | O7FF32 | EB100ZF | zoooll | 470060 | <DLE: €@ <DLE: @x .4
0200 | 408810 | 3FFFEF | 2088C0 | AOO0IO0 | FAGOO0 | 060000 | FAOODZ | EFzo00 | <DLE= "@T97 A "<SRC
02E0 | 984700 | 90400E | E10468 | 310008 | 2001C0 | 7EIFE0 | OFFF7E | BlOOZF | . G7 <30 @O h <EOT:
O2F0 | OFFF3L | B3CO11 | 470060 | 40CE10 | 37FFF4 | FAGOO0 | 060000 | FAODOZ | 1¥<BELL: <DC1=&:°
0300 | EF2000 | 984700 | 904006 | EA0468 | 310009 | 200180 | 7&IFE0 | OFFFE7 | . <3PCH. 67 <50>@C
0310 | B100ZF | OFFF20 | B3COI1 | 470080 | 40CB10 | 37FFF4 | FABO00 | 080000 |/ .E <SPC: §<BELL: <C
0320 | 2088EF | ZOFFFD | EFAOZ0 | 200000 | B7AOD34 | 200040 | EF2044 | FADOOD | TSRO @ §<SPC: <SF
0330 | 020308 | 000000 | ZFFFFD | B7AZAE | OFFFID | 2000C0 | 7&IFE0 | OFFF4F | @ <ETH=<STE:. . a9
0340 | BI0OZF | z0sei0 | FEIFE0 | 200060 | 7BIFE0 | 200010 | 7EiFE0 | 07FFE7 | J.E <DLE: t<SPCx€ <
0350 | BIOOGF | z08690 | FEIFE0 | 200060 | 7BIFE0 | 200020 | 7EiFE0 | 0FFFPF | 0. O t<3RC:E <USs
0360 | BIODGF | 200CCE | 273987 | ED200E | 3AFFFE | ED20I0 | 3AFFFC | 200010 | 0. E <FFe<SPCs+9
0370 | 7EiFe0 | OFFF3S | BIOOZF | 208700 | 7&IFE0 | 200010 | 7&IFE0 | 200010 | € <USmx 5 §<BELL= [.*
0330 | 7EiFE0 | OFFFED | BIOOGF | 208610 | 7BIFE0 | 200050 | 7EIFE0 | 200020 | € <USExm§<BELL: 0 v

<m

£

STATUS: Idle

- Reads code from the MCU and loads it up into the Code Window. Code reading is resources

131

MikroElektronika

mikoPascal PRO for PIC32

Software Simulator Debugger Options

Debugger Options
_ Function | Toolbar
Name Description Key \con
Start Debugger Starts Debugger. F9 Eb
Stop Debugger Stop Debugger. Ctrl + F2 E—?;;
Run/Pause Debugger | Run/Pause Debugger. F6 EDJ

Executes the current program line, then halts. If the executed
Step Into program line calls another routine, the debugger steps into the F7 18]
routine and halts after executing the first instruction within it.

Executes the current program line, then halts. If the executed
program line calls another routine, the debugger will not step into

[=4)
Step Over it. The whole routine will be executed and the debugger halts at| | ¢ ¢
the first instruction following the call.
Step Out Executes all remaining program Ilnells., within the sul?routlne. The F8 _—
debugger halts immediately upon exiting the subroutine.
Run To Cursor Executes the program until reaching the cursor position. Ctrl + F8]
Toggle Breakpoint Toggle breakpoints option sets new breakpoints or removes those E5 -

already set at the current cursor position.

Related topics: Run Menu, Debug Toolbar

MikroElektronika

132

mikroPascal PRO for PIC32

CHAPTER 6

mikroPascal PRO for PIC32
Specifics

The following topics cover the specifics of mikroPascal PRO for PIC32 compiler:

- ANSI Standard Issues

- Predefined Globals and Constants
- Accessing Individual Bits

- Interrupts

- Linker Directives

- Built-in Routines

- Code Optimization

133 MikroElektronika

mikoPascal PRO for PIC32

Predefined Globals and Constants

To facilitate PIC32 programming, the mikroPascal PRO for PIC32 implements a number of predefined globals and
constants.

All PIC32 SFRs are implicitly declared as global variables of volatile word. These identifiers have an external linkage,
and are visible in the entire project. When creating a project, the mikroPascal PRO for PIC32 will include an appropriate
(*.mpas) file from defs folder, containing declarations of available SFRs and constants (such as PORTB, ADPCFG, etc).
All identifiers are in upper case, identical to nomenclature in the Microchip datasheets.

For a complete set of predefined globals and constants, look for “Defs” in the mikroPascal PRO for PIC32 installation
folder, or probe the Code Assistant for specific letters (Ctrl+Space in the Code Editor).

Predefined project level defines

mikroPascal PRO for PIC32 provides predefined project level defines that you can use in your project :
First one is equal to the name of selected device for the project. For example:

{$IFDEF P32MX460F512L}

%éﬁNDIF}

Second one is equal to the family name :

{SIFDEF PIC32}

%éﬁNDIF}

Related topics: Project Level Defines

MikroElektronika 134

mikroPascal PRO for PIC32

Accessing Individual Bits

The mikroPascal PRO for PIC32 allows you to access individual bits of 32-bit variables. It also supports sbit and bit
data types.

Lets use the Zero bit as an example. This bit is defined in the definition file of the particular MCU as :

const 7z = 1;
var 7z bit : sbit at SR.BI;

To access this bit in your code by its name, you can write something like this:

// Clear Zero Bit
SR.Z := 0;

In this way, if Zero bit changes its position in the register, you are sure that the appropriate bit will be affected.
But, if Zero bit is not located in the designated register, you may get errors.

Another way of accesing bits is by using the direct member selector (.) with a variable, followed by a primary expression.
Primary expression can be variable, constant, function call or an expression enclosed by parentheses. For individual bit
access there are predefined global constants 20, B1, .. , B31, 0r0, 1, .. 31, with 31 being the most significant bit

// predefined globals as bit designators
// Clear bit 0 in STATUS register
SR.BO := 0;

// literal constant as bit designator
// Set bit 5 in STATUS register
SR.5 :=1;

// expression as bit designator

// Set bit 6 in STATUS register

i :=5;

SR. (1+1) := 1;

In this way, if the target bit changes its position in the register, you cannot be sure that you are invoking the appropriate bit.

When using literal constants as bit designators instead of predefined ones, make sure not to exceed the appropriate
type size.

This kind of selective access is an intrinsic feature of mikroPascal PRO for PIC32 and can be used anywhere in the
code. Identifiers BO—B31 are not case sensitive and have a specific namespace. You may override them with your own
members B0O—B31 within any given structure.

Also, you can access the desired bit by using its alias name, in this case z bit:

// Set Zero Bit
Z bit := 1;

In this way, if the Zero bit changes its register or position in the register, you are sure that the appropriate bit will be
affected.

See Predefined Globals and Constants for more information on register/bit names.

135 MikroElektronika

mikoPascal PRO for PIC32

sbit type

The mikroPascal PRO for PIC32 compiler has sbit data type which provides access to bit-addressable SFRs.
You can declare a sbit varible in a unit in such way that it points to a specific bit in SFR register:

unit MyUnit;

var Abit: sbit; sfr; external; // Abit is precisely defined in some external file, for
example in the main program unit

implementation

end.

In the main program you have to specify to which register this sbit points to, for example:

program MyProgram;

var Abit: sbit at PORTB.0; // this is where Abit is fully defined

begin

end.

In this way the variable 2bi t will actually point to PORTB.0. Please note that we used the keyword sfr for declaration
of Abit, because we are pointing it to PORTB which is defined as a sfr variable.

In case we want to declare a bit over a variable which is not defined as sfr, then the keyword s f r is not necessary,
for example:

unit MyUnit;

var AnotherBit: sbit; external; // Abit is precisely defined in some external file, for
example in the main program unit

implementation
end.
program MyProgram;

var MyVar: byte;
var Abit: sbit at MyVar.0; // this is where Abit is fully defined

begin

end.

MikroElektronika 136

mikroPascal PRO for PIC32

at keyword

You can use the keyword “at” to make an alias to a variable, for example, you can write a library without using register
names, and later in the main program to define those registers, for example:

unit MyUnit;
var PORTAlias: byte; external; // here in the library we can use its symbolic name
irﬁ.)lementation
end.
program MyProgram;
Qé} PORTAlias: byte at PORTB; // this is where PORTAlias is fully defined
begin
end.
Note : Bear in mind that when using a2t operator in your code over a variable defined through a external modifier,
appropriate memory specifer must be appended also.

bit type

The mikroPascal PRO for PIC32 compiler provides a bit data type that may be used for variable declarations. It can not
be used for argument lists, and function-return values.

var bf : bit; // bit variable
There are no pointers to bit variables:
varptr——bit; // invalid

An array of type bit is not valid:
vaFr—earr{5+—biE // invalid
Note :

- Bit variables can not be initialized.

- Bit variables can not be members of records.
- Bit variables do not have addresses, therefore unary operator @ (address of) is not applicable to these variables.

Related topics: Predefined globals and constants, External modifier

137 MikroElektronika

mikoPascal PRO for PIC32

Interrupts

The PIC32MX generates interrupt requests in response to interrupt events from peripheral modules. The Interrupt
module exists external to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.
The PIC32MX Interrupts module includes the following features:

- Up to 96 interrupt sources.

- Up to 64 interrupt vectors.

- Single and Multi-Vector mode operations.

- Five external interrupts with edge polarity control.

- Interrupt proximity timer.

- Module freeze in Debug mode.

- Seven user-selectable priority levels for each vector.

- Four user-selectable subpriority levels within each priority.

- User-configurable shadow set based on priority level (this feature is not available on all devices; refer to
the specific device data sheet for availability).

- Software can generate any interrupt.

- User-configurable interrupt vector table location.

ISRs are organized in IVT. ISR is defined as a standard function but with the iv directive afterwards which connects the
function with specific interrupt vector. For more information on IVT refer to the PIC32 Family Reference Manual.

Configuring Interrupts
The PIC32MX interrupt controller can be configured to operate in one of two modes:

- Single Vector mode - all interrupt requests will be serviced at one vector address (mode out of reset).
- Multi-Vector mode - interrupt requests will be serviced at the calculated vector address.

Single Vector Mode

In this mode, the CPU always vectors to the same address. This means that only one ISR can be defined.
The Single Vector mode address is calculated by using the Exception Base (EBase) address (its address
default is 0X9FC01000E). The exact formula for Single Vector mode is as follows: Single Vector Address =
EBase + 0x200.

Multi Vector Mode

In this mode, the CPU vectors to the unique address for each vector number. Each vector is located at a
specific offset, with respect to a base address specified by the EBase register in the CPU.

The individual vector address offset is determined by the following equation: EBase + (Vector_Number x
Vector_Space) + 0x200.

By default, the compiler configures interrupts in the Multi Vector mode, with the EBase address set to
0x9FC01000 and vector spacing of 32.
Configuring the Interrupt operating mode is performed in the Edit Project window.

MikroElektronika 138

mikroPascal PRO for PIC32

Interrupt Priorities

In the Multi Vector Mode, the user is able to assign a group priority and group subpriority level to each of the
interrupt vectors. The user-selectable priority levels range from 1 (the lowest priority) to 7 (the highest).

If an interrupt priority is set to zero, the interrupt vector is disabled for both interrupt and wake-up purposes. Interrupt
vectors with a higher priority level preempt lower priority interrupts.

The subpriority will cause that when two interrupts with the same priority are pending, the interrupt with the highest

subpriority will be handled first. The user-selectable subpriority levels range from 0 (the lowest subpriority) to 3 (the
highest).

Interrupts and Register Sets

The PIC32MX family of devices employs two register sets, a primary register set for normal program execution and a
shadow register set for highest priority interrupt processing.

Register Set Selection in Single Vector Mode

In Single Vector mode, you can select which register set will be used. By default, the interrupt controller will
instruct the CPU to use the first register set. This can be changed later in the code.

Interrupts and Register Sets
When a priority level interrupt matches a shadow set priority, the interrupt controller instructs the CPU to use

the shadow set. For all other interrupt priorities, the interrupt controller instructs the CPU to use the primary
register set.

Interrupt Coding Requirements

In order to correctly utilize interrupts and correctly write the ISR code, the user will need to take care of these things:
1. Write the Interrupt Service Routine. You may use Interrupt Assistant to easily write this routine.
2. Initialize the module which will generate an interrupt.
3. Set the correct priority and subpriority for the used module according to the priorities set in the Interrupt

Service Routine.
4. Enable Interrupts.

Interrupt Service Routine

Interrupt service routine is defined in this way:

procedure interrupt(); iv IVT ADC; ilevel 7; ics ICS SOFT;
begin

// Interrupt service routine code
end;

139 MikroElektronika

mikoPascal PRO for PIC32

where:

iv - reserved word that inform the compiler that it is an interrupt service routine.

IVT_ADC - appropriate Interrupt Vector.

ilevel 7 - Interrupt priority level 7.

ics Interrupt Context Saving; Interrupt Context Saving can be performed in several ways:

1. ICs SOET - Context saving is carried out by the software.

2. ICs SRS - Shadow Register set is use for context saving.

3. ICs OFF - No context saving

4. 1Cs AUTO - Compiler chooses whether the TCS SOFT or ICS SRS will be used.

User can explicitly declare starting interrupt routine address using org directive:

procedure interrupt(); org 0x9D000000; iv IVT ADC; ilevel 7; ics ICS SOFT;
begin

// Interrupt service routine code
end;

Function Calls from Interrupt

Calling functions from within the interrupt routine is possible. The compiler takes care about the registers being used,
both in “interrupt” and in “main” thread, and performs “smart” context-switching between two of them, saving only the
registers that have been used in both threads. It is not recommended to use a function call from interrupt. In case of
doing that take care of stack depth.

Use the DisableContextSaving to instruct the compiler not to automatically perform context-switching. This means that
no register will be saved/restored by the compiler on entrance/exit from interrupt service routine.

This enables the user to manually write code for saving registers upon entrance and to restore them before exit from
interrupt.

MikroElektronika 140

mikroPascal PRO for PIC32

Interrupt Example
Here is a simple example of handling the interrupts from Timer1 (if no other interrupts are allowed):
program Timerl interrupt;

procedure TimerlInt(); iv IVI TIMER 1; ilevel 7; ics ICS_SRS;

begin
T1IF bit := 0; // Clear T1IF
LATB := not PORTB; // Invert PORTB

end;

begin
AD1IPCFG := OxFFFF; // Initialize AN pins as digital
TRISB := 0; // initialize PORTB as output
LATB := OxAAAA; // Initialize PORTB value
TMR1 := 0; // reset timer value to zero
PR1 := 65000; // Load period register
T1IPO bit := 1; // set interrupt
T1IP1 bit := 1; // priority
T1IP2 bit := 1; // to 7
TCKPSO bit := 1; // Set Timer Input Clock
TCKPS1 bit := 1; // Prescale value to 1:256

EnableInterrupts();

T1IE bit := 1; // Enable Timerl Interrupt
ON TICON bit := 1; // Enable Timerl
end.

141

MikroElektronika

mikoPascal PRO for PIC32

Linker Directives

mikroPascal PRO for PIC32 uses an internal algorithm to distribute objects within memory. If you need to have a
variable, constant or a routine at the specific predefined address, use the linker directives absolute and org.

When using these directives, be sure to use them in proper memory segments, i.e. for functions it is the KSEGO and
for variables it is the KSEG1. Linker directives are used with the virtual addresses.

Directive absolute

Directive absolute specifies the starting address in RAM for a variable. If the variable is multi-byte, higher bytes will be
stored at the consecutive locations.

Directive absolute is appended to declaration of a variable:

// Variable x will occupy 1 word (16 bits) at address 0xA0000000
var x : word; absolute 0xA0000000;

// Variable y will occupy 2 words at addresses 0xA0000000 and 0xA0000002
var y : longint; absolute 0xA0000000;

Be careful when using the absolute directive, as you may overlap two variables by accident. For example:

// Variable i will occupy 1 word at address 0xA0000002;
var i : word; absolute 0xA0000002;

// Variable will occupy 2 words at 0xA0000000 and 0xA0000002; thus,

// changing i changes Jj at the same time and vice versa
var jj : longint; absolute 0xA0000000;

Directive org

Directive org specifies the starting address of a constant or a routine in ROM. It is appended to the constant or a routine
declaration.

To place a constant array in Flash memory, write the following :

// Constant array MONTHS will be placed starting from the address 0x9D000000

const MONTHS : array[l..12] of byte = (31,28,31,30,31,30,31,31,30,31,30,31); org
0x800;

If you want to place simple type constant into Flash memory, instead of following declaration:

const SimpleConstant : byte = O0xAA; org 0x9D000000;

use an array consisting of single element :

const SimpleConstant : array[l] of byte = (0xAA); org 0x9D000000;

MikroElektronika 142

mikroPascal PRO for PIC32

In first case, compiler will recognize your attempt, but in order to save Flash space, and boost performance, it will automatically
replace all instances of this constant in code with it’s literal value.
In the second case your constant will be placed in Flash in the exact location specified.
To place a routine on a specific address in Flash memory you should write the following :
procedure proc (par : byte); org 0x9D000000;
begin
// Procedure will start at address 0x9D000000;
end;
org directive can be used with main routine too. For example:
program Led Blinking;
begin org 0x9D000000; // main procedure starts at 0x9D000000
end.
Directive orgall
Use the orgall directive to specify the address above which all routines and constants will be placed. Example:
begin
orgall (0x9D000000); // All the routines, constants in main program will be above the

address 0x9D000000

end.

143 MikroElektronika

mikoPascal PRO for PIC32

Built-in Routines

mikroPascal PRO for PIC32 compiler provides a set of useful built-in utility functions. Built-in functions do not have any
special requirements. You can use them in any part of your project.

The Delay usand Delay ms routines are implemented as “inline”; i.e. code is generated in the place of a call, so the
call doesn’t count against the nested call limit.

The Vdelay ms, Vdelay advanced ms, Delay Cyc, Delay Cyc Long, Get Fosc kHz and Get Fosc Per
Cyc are actual Pascal routines. Their sources can be found in the delays.mpas file located in the uses folder of the
compiler.

-Lo

- Hi

- Higher

- Highest
- LoWord
- HiWord

-Inc
- Dec

- Chr
- Ord

- SetBit
- ClearBit
- TestBit

- Delay_us

- Delay_ms

- Vdelay_ms

- Vdelay_Advanced_ms
- Delay_Cyc

- Delay_Cyc_Long

- Clock_kHz

- Clock_MHz

- Get_Fosc_kHz

- Get_Fosc_Per_Cyc

- Reset
- Clrwdt

- DisableContextSaving

- SetFuncCall
- SetOrg

- GetDateTime
- GetVersion

MikroElektronika 144

mikroPascal PRO for PIC32

- KVAO_TO_KVA1
- KVA1_TO_KVAO
-KVA_TO_PA

- PA_TO_KVAO

- PA_TO_KVA1

- CP0_Get

- CP0O_Set

- Enablelnterrupts
- Disablelnterrupts

Lo

Prototype function Lo (number: longint): byte;

Description | Function returns the lowest byte of number. Function does not interpret bit patterns of number —it
merely returns 8 bits as found in register.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.

Parameters | - number: input number

Returns Lowest 8 bits (byte) of number, bits 7..0.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

Example d := 0x12345678;
tmp := Lo(d); // Equals 0x78
Lo(d) := OxAA; // d equals 0x123456AA

Notes None.

Hi

Prototype function Hi (number: longint): byte;

Description | Function returns next to the lowest byte of number. Function does not interpret bit patterns of number
— it merely returns 8 bits as found in register.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.

Parameters |- number: input value

Returns Returns next to the lowest byte of number, bits 8..15.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

Example d = 0x12345678;
tmp := Hi({d); // Equals 0x56
Hi(d) := OxAA; // d equals 0x1234AA78

Notes None.

145

MikroElektronika

mikoPascal PRO for PIC32

Higher

Prototype function Higher (number: longint): byte;

Description | Function returns next to the highest byte of number. Function does not interpret bit patterns of number
— it merely returns 8 bits as found in register.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.

Parameters | - number: input number

Returns Returns next to the highest byte of number, bits 16..23.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

Example d := 0x12345678;
tmp := Higher(d); // Equals 0x34
Higher(d) := OxAA; // d equals 0x12AA5678

Notes None.

Highest

Prototype function Highest (number: longint): byte;

Description | Function returns the highest byte of number. Function does not interpret bit patterns of number — it
merely returns 8 bits as found in register.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.

Parameters | - number: input number

Returns Returns the highest byte of number, bits 24..31.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

Example d = 0x12345678;
tmp := Highest(d); // Equals 0x12
Highest(d) := OxAA; // d equals O0xAA345678

Notes None.

MikroElektronika 146

mikroPascal PRO for PIC32

LoWord
Prototype function LoWord(val : longint) : word;
Description | The function returns low word of val. The function does not interpret bit patterns of va1l — it merely
returns 16 bits as found in register.
Parameters :
- val:input value
Parameters number
Returns Low word of val, bits 15. . 0.
Requires Nothing.
Example d := 0x12345678;
tmp := LoWord(d); // Equals 0x5678
LoWord(d) := OxAAAA; // d equals O0x1234AAAA
Notes None.
HiWord
Prototype function HiWord(val : longint) : word;
Description | The function returns high word of va 1. The function does not interpret bit patterns of val — it merely
returns 16 bits as found in register.
Parameters :
- val:input value
Parameters | number
Returns High word of va 1, bits 31..16.
Requires Nothing.
Example d = 0x12345678;
tmp := HiWord(d); // Equals 0x1234
HiWord(d) := OxAAAA; // d equals OxAAAA5678
Notes None.

147

MikroElektronika

mikoPascal PRO for PIC32

Inc

Prototype procedure Inc(var par : longint);

Description | Increases parameter par by 1.

Parameters |- par: value which will be incremented by 1
Returns Nothing.
Requires Nothing.
Example p = 4;
Inc(p); // p is now 5
Notes None.
Dec
Prototype procedure Dec (var par : longint);

Description | Decreases parameter par by 1.

Parameters |- par: value which will be decremented by 1
Returns Nothing.
Requires Nothing.
Example p = 4;
Dec(p); // p is now 3
Notes None.
Chr
Prototype function Chr(code : byte) : char;

Description | Function returns a character associated with the specified character code . Numbers from 0 to 31
are the standard non-printable ASCII codes.

This is an “inline” routine; the code is generated in the place of the call.

Parameters |- code :input character

Returns Nothing.

Requires Nothing.

Example c := Chr(10); // returns the linefeed character
Notes None.

MikroElektronika 148

mikroPascal PRO for PIC32

Ord
Prototype function Ord(const character : char) : byte;
Description | Function returns ASCII code of the character.
This is an “inline” routine; the code is generated in the place of the call.
Parameters |- character: input character
Returns ASCII code of the character.
Requires Nothing.
Example c = 0Ord(*A”); // returns 65
Notes None.
SetBit
Prototype procedure SetBit (var register : word; rbit : byte);
Description | Function sets the bit rbit of register . Parameter rbit needs to be a variable or literal with value
0..15. For more information on register identifiers see Predefined Globals and Constants .
This is an “inline” routine; the code is generated in the place of the call.
Parameters |- register :desired register
- rbit: desired bit
Returns Nothing.
Requires Nothing.
Example SetBit(PORTB, 2); // Set RB2
Notes None.
ClearBit
Prototype procedure ClearBit (var register : byte; rbit : byte);
Description | Function clears the bit rbit of register. Parameter rbit needs to be a variable or literal with value
0..7. See Predefined globals and constants for more information on register identifiers.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.
Parameters |- register :desired register
- rbit: desired bit
Returns Nothing.
Requires Nothing.
Example ClearBit(PORTC, 7); // Clear RC7
Notes None.

149

MikroElektronika

mikoPascal PRO for PIC32

TestBit

Prototype function TestBit (register , rbit : byte) : byte;

Description | Function tests if the bit rbit of register is set. If set, function returns 1, otherwise returns 0.
Parameter rb i t needs to be a variable or literal with value 0..7. See Predefined globals and constants
for more information on register identifiers.

This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.

Parameters |- register :desired register
- rbit: desired bit

Returns If the bit is set, returns 1, otherwise returns O.

Requires Nothing.

Example flag := TestBit (PORTE, 2); // 1 if RE2 is set, otherwise 0

Notes None.

Delay_us

Prototype procedure Delay us(Time In us: dword);

Description | Creates a software delay in duration of Time In us microseconds.

This is an “inline” routine; the code is generated in the place of the call, so the call doesn’t count
against the nested call limit.

Parameters |- Time In us: delay time in microseconds. Valid values: constant values, range of applicable
constants depends on the oscillator frequency

Returns Nothing.

Requires Nothing.

Example Delay us(10); // Ten microseconds pause

Notes None.

Delay_ms

Prototype procedure Delay ms (Time In ms: dword);

Description | Creates a software delay in duration of Time_In_ms milliseconds.

This is an “inline” routine; the code is generated in the place of the call, so the call doesn’t count
against the nested call limit.

Parameters |- Time In ms: delay time in milliseconds. Valid values: constant values, range of applicable
constants depends on the oscillator frequency

Returns Nothing.

Requires Nothing.

Example Delay ms(1000); // One second pause

Notes For generating delays with variable as input parameter use the Vdelay_ms routine.

MikroElektronika 150

mikroPascal PRO for PIC32

VDelay _ms

Prototype procedure VDelay ms(Time ms : word);

Description | Creates a software delay in duration of Time_ms milliseconds. Generated delay is not as precise as
the delay created by Delay_ms.

Parameters |- Time ms: delay time in milliseconds

Returns Nothing.

Requires Nothing.

Example var pause : word;
\'/].Délayims (pause); // ~ one second pause

Notes None.

VDelay advanced_ms

Prototype procedure VDelay advanced ms (timeims, Current Fosc kHz: word);

Description | Creates a software delay in duration of time_in_ms milliseconds (a variable), for a given oscillator
frequency. Generated delay is not as precise as the delay created by Delay _ms.
Note that Vdelay_ms is library function rather than a built-in routine; it is presented in this topic for
the sake of convenience.

Parameters |- time ms: delay time in milliseconds
-Current Fosc kHz: frequency in kHz

Returns Nothing.

Requires Nothing.

Example pause := 1000;
fosc := 10000;
VDelay advanced ms (pause, fosc); // Generates approximately one second
pause, for a oscillator frequency of 10 MHz

Notes None.

Delay Cyc

Prototype procedure Delay Cyc(x: word; y: word);

Description | Creates a delay based on MCU clock. Delay lasts for x*16384 + y MCU clock cycles.

Parameters | - x: NumberOfCycles divided by 16384
- y: remainder of the NumberOfCycles/16384 division

Returns Nothing.

Requires Nothing.

Example Delay Cyc(l, 10); // 1x16384 + 10 = 16394 cycles pause

Notes Delay Cyc is a library function rather than a built-in routine; it is presented in this topic for the sake

of convenience.

151

MikroElektronika

mikoPascal PRO for PIC32

Delay Cyc Long
Prototype procedure Delay Cyc Long(CycNo : word);
Description | Creates a delay based on MCU clock. Delay lasts for CycNo MCU clock cycles.
Parameters |- CycNo: number of MCU cycles
Returns Nothing.
Requires Nothing.
Example Delay Cyc Long(16384); // 16384 cycles pause
Notes Delay Cyc Long is a library function rather than a built-in routine; it is presented in this topic for
the sake of convenience.
Clock_kHz
Prototype function Clock kHz () longint;
Description | Returns device clock in kHz, rounded to the nearest integer.
This is an “inline” routine; the code is generated in the place of the call.
Parameters | None.
Returns Device clock in kHz, rounded to the nearest integer.
Requires Nothing.
Example clk := Clock kHz();
Notes None.
Clock_MHz
Prototype function Clock MHz () : word;
Description | Returns device clock in MHz, rounded to the nearest integer.
This is an “inline” routine; the code is generated in the place of the call.
Parameters | None.
Returns Device clock in MHz, rounded to the nearest integer.
Requires Nothing.
Example clk := Clock MHz();
Notes None.

MikroElektronika

152

mikroPascal PRO for PIC32

Get_Fosc_kHz

Prototype function Get Fosc kHz () : longint;

Description | Function returns device clock in kHz, rounded to the nearest integer.

Parameters | None.

Returns Device clock in kHz.

Requires Nothing.

Example clk := Get Fosc kHz();

Notes -Get Fosc kHz is a library function rather than a built-in routine; it is presented in this topic for the
sake of convenience.

Get_Fosc_Per _Cyc

Prototype function Get Fosc Per Cyc() : word;

Description | Function returns device’s clock per cycle, rounded to the nearest integer.
Note that Get Fosc Per Cyc is library function rather than a built-in routine; it is presented in this
topic for the sake of convenience.

Parameters | None.

Returns Device clock in kHz.

Requires Nothing.

Example var clk per cyc : word;
éi};_per_cyc := Get Fosc Per Cyc();

Notes None.

Reset

Prototype procedure Reset () ;

Description | This procedure is equal to assembler instruction reset.

Parameters | None.

Returns Nothing.

Requires Nothing.

Example Reset (); // Resets the MCU

Notes None.

153

MikroElektronika

mikoPascal PRO for PIC32

Clrwdt
Prototype procedure ClrWdt () ;
Description | This procedure is equal to assembler instruction c1 rwdt.
Parameters | None.
Returns Nothing.
Requires Nothing.
Example Clrwdt (); // Clears WDT
Notes None.

DisableContextSaving

Prototype procedure DisableContextSaving() ;

Description | Use the DisableContextSaving() to instruct the compiler not to automatically perform context-
switching. This means that no register will be saved/restored by the compiler on entrance/exit from
interrupt service routine. This enables the user to manually write code for saving registers upon
entrance and to restore them before exit from interrupt.

Parameters | None.

Returns Nothing.

Requires This routine must be called from main.

Example DisableContextSaving(); // instruct the compiler not to automatically
perform context-switching

Notes None.

MikroElektronika 154

mikroPascal PRO for PIC32

SetFuncCall

Prototype procedure SetFuncCall (FuncName: string);

Description | If the linker encounters an indirect function call (by a pointer to function), it assumes that any routine
whose address was taken anywhere in the program can be called at that point if it's prototype matches
the pointer declaration.

Use the SetFuncCall directive within routine body to instruct the linker which routines can be called
indirectly from that routine :

SetFunCCall (called func([, ,...])

Routines specified in the setFunccall argument list will be linked if the routine containing
SetFunCCall directive is called in the code no matter whether any of them was explicitly called or
not.

Thus, placing setFuncCall directive in main will make compiler link specified routines always.

Parameters | - FuncName: function name

Returns Nothing.

Requires Nothing.

Example procedure first (p, g: byte);
begin

SetFuncCall (second); // let linker know that we will call the routine
‘second’
end

Notes The setFuncCall directive can help the linker to optimize function frame allocation in the compiled

stack.
SetOrg

Prototype procedure SetOrg(RoutineName: String; address: longint);

Description | Use the setOrg (); routine to specify the starting address of a routine in ROM.

Parameters |- RoutineName: routine name
- address: starting address

Returns Nothing.

Requires This routine must be called from main.

Example SetOrg(UARTliT/\Irite, 0x1234) ;

Notes None.

155

MikroElektronika

mikoPascal PRO for PIC32

DoGetDateTime
Prototype function DoGetDateTime () : String;
Description | Use the GetDateTime () to get date and time of compilation as string in your code.
Parameters | None.
Returns String with date and time when this routine is compiled.
Requires Nothing.
Example str := GetDateTime () ;
Notes None.
GetVersion
Prototype function GetvVersion() : string;
Description | Use the Getversion (); to get the current version of compiler.
Parameters | None.
Returns String with current compiler version.
Requires Nothing.
Example str := GetVersion(); // for example, str will take the value of
‘8.2.1.6"7
Notes None.

KVAO_TO_KVA1

Prototype function KVAO TO KVAI (Address: dword) : dword;

Description | Function converts virtual address from KSEGO to the virtual address in the KSEG1.
Parameters | Desired Virtual address in the KSEGO.

Returns Virtual address in the KSEG1.

Requires Nothing.

Example address := KVAO TO KVA1l (0x9FC00000) ;

Notes None.

MikroElektronika

156

mikroPascal PRO for PIC32

KVA1_TO_KVAO

Prototype function KVAl TO KVAO (Address: dword) dword;
Description | Function converts virtual address from KSEG1 to the virtual address in the KSEGO.
Parameters | Desired Virtual address in the KSEG1.
Returns Virtual address in the KSEGO.
Requires Nothing.
Example address := KVAl TO KVAO (0xBFC00000) ;
Notes None.
KVA_TO PA
Prototype function KVA TO PA(Address: dword) : dword;
Description | Function converts virtual address from any Kernel segment to the appropriate physical address.
Parameters | Desired Virtual Address.
Returns Appropriate physical address.
Requires Nothing.
Example address := KVA TO PA(0xBFC00000);
Notes None.
PA_TO_KVAO
Prototype function PA TO KVAO (Address: dword) dword;
Description | Function converts physical address to the virtual address in the KSEGO.
Parameters [Desired physical address.
Returns Appropriate virtual address in the KSEGO.
Requires Nothing.
Example address := PA TO KVAQ (0x1D00000O) ;
Notes None.
PA_TO_KVA1
Prototype function PA TO KVAI (Address: dword) dword;
Description | Function converts physical address to the virtual address in the KSEG1.
Parameters | Appropriate virtual address in the KSEG1.
Returns Virtual address in the KSEG1.
Requires Nothing.
Example address := PA TO KVA1 (0x1D000000) ;
Notes None.

157

MikroElektronika

mikoPascal PRO for PIC32

CPO_GET

Prototype function CPO_GET (const register: TCPOREG): dword;

Description | Function returns the value of the coprocessor register or part of the register, based upon the argument
entered.

Parameters | Parameter must be a constant from the enumerated built-in constants list, which can be found at the
bottom of this page.

Returns Value of the coprocessor register or part of the register.

Requires Nothing.

Example var register value : dword;
register value := CPO_GET(CPO_CONFIG) ;

Notes None.

CPO_SET

Prototype procedure CPO_SET (const register: TCPOREG; value: dword);

Description | Function sets the value of the coprocessor register or part of the register, based upon the register
argument.

Parameters | Function sets the value of the coprocessor register or part of the register, based upon the register
argument.

Returns Nothing.

Requires Nothing.

Example CPO_SET (CPO_CONFIG, 0x1A2C0000);

Notes None.

Enablelnterrupts

Prototype procedure EnableInterrupts();
Description | Function enables interrupts.
Parameters | None.

Returns Nothing.

Requires Nothing.

Example EnableInterrupts();

Notes None.

MikroElektronika

158

mikroPascal PRO for PIC32

Disablelnterrupts

Prototype procedure DisableInterrupts();
Description | Function disables interrupts.
Parameters | None.
Returns Nothing.
Requires Nothing.
Example EnableInterrupts () ;
Notes None.

Coprocessor Registers
CPO_HWRENA CP0_BADVADDR CPO_COUNT CP0_COMPARE CPO_STATUS
CPO_INTCTL CP0O_SRSCTL CP0_SRSMAP CP0O_CAUSE CPO_EPC
CPO_PRID CPO_EBASE CPO_CONFIG CPO_CONFIG1 CPO_CONFIG2
CPO_CONFIG3 CP0_DEBUG CPO_TRACECONTROL CPO_TRACECONTROL2 CP0_USERTRACEDATA
CPO_TRACEBPC CP0_DEBUG2 CPO_DEPC CP0_ERROREPC CPO_DESAVE

159

MikroElektronika

mikoPascal PRO for PIC32

Copressor Register Fields

CPO_HWRENA MASK

CPO_STATUS_IE

CPO_STATUS EXL

CPO_STATUS_ERL

CP0O_STATUS_UM

CPO_STATUS_IMO

CPO_STATUS_IM1

CPO_STATUS_IPL

CPO_STATUS_IM2

CPO_STATUS_IM3

CPO_STATUS_IM4

CPO_STATUS_IM5

CPO_STATUS_IM6

CPO_STATUS_IM7

CPO_STATUS_CEE

CPO_STATUS_NMI

_CPO_STATUS_SR

CPO_STATUS_TS

CP0O_STATUS_BEV

CP0O_STATUS_RE

CPO_STATUS_FR

CPO_STATUS_RP

CP0O_STATUS_CUO

CPO_STATUS_CU1

CPO_STATUS_CU2

CP0O_STATUS_CU3

CPO_INTCTL_VS

CPO_INTCTL_IPPCI

CPO_INTCTL_IPTI

CP0O_SRSCTL_CSS

CPO_SRSCTL_PSS

CPO_SRSCTL_ESS

CPO_SRSCTL_EICSS

CPO_SRSCTL_HSS

CP0O_SRSMAP_SSV0

CPO_SRSMAP_SSV1

CPO_SRSMAP_SSV2

CPO_SRSMAP_SSV3

CPO_SRSMAP_SSV4

CPO_SRSMAP_SSV5

CPO_SRSMAP_SSV6

CPO_SRSMAP_SSV7

CP0_CAUSE_EXCCODE

CPO_CAUSE_IPO

CPO_CAUSE_IP1

CPO_CAUSE_RIPL

CPO_CAUSE_IP2

CPO_CAUSE_IP3

CPO_CAUSE_IP4

CPO_CAUSE_IP5

CP0_CAUSE_IP6

CPO_CAUSE_IP7

CPO_CAUSE_WP

CPO_CAUSE_IV

CP0_CAUSE_PCI

CP0_CAUSE_DC

CP0_CAUSE_CE

CPO_CAUSE_TI

CPO_CAUSE_BD

CPO_PRID_REVISION

CPO_PRID_PATCHREV

CP0O_PRID_MINORREV

CPO_PRID_MAJORREV

CP0_PRID_PROCESSORD

CPO_PRID_COMPANYID

CPO_EBASE_CPUNUM

CPO_EBASE_EBASE

CPO_CONFIG_KO

CPO_CONFIG_MT

CPO_CONFIG_AR

CPO_CONFIG_AT

CPO_CONFIG_BE

CPO_CONFIG_DS

CPO_CONFIG_MDU

CPO_CONFIG_SB

CPO_CONFIG_UDI

CPO_CONFIG_KU

CPO_CONFIG1_M

CPO_CONFIG1_FP

CPO_CONFIG1_EP

CPO_CONFIG1_CA

CPO_CONFIG1_WR

CPO_CONFIG1_PC

CPO_CONFIG1_MD

CPO_CONFIG1_C2

CPO_CONFIG1_DA

CPO_CONFIG1_DL

CPO_CONFIG1_DS

CPO_CONFIG1_IA

CPO_CONFIG1_IL

CPO_CONFIG1_IS

CPO_CONFIG1_MMUSIZE

CPO_CONFIG1_M

CPO_CONFIG2_M

CPO_CONFIG3_TL

CPO_CONFIG3_SM

CPO_CONFIG3_SP

CPO_CONFIG3_VINT

CP0O_CONFIG3_VEIC

CPO_CONFIG3_ITL

CPO_CONFIG3_M

CPO_DEBUG_DSS

CPO_DEBUG_DBP

CPO_DEBUG_DDBL

CPO_DEBUG_DDBS

CPO_DEBUG_DIB

CPO_DEBUG_DINT

CPO_DEBUG_DIBIMPR

CPO_DEBUG_R

CPO_DEBUG_SST

CPO_DEBUG_NOSST

CPO_DEBUG_DEXCCODE

CPO_DEBUG_VER

CP0_DEBUG_DDBLIMPR

CP0_DEBUG_DDBSIMPR

CPO_DEBUG_IEXI

CPO_DEBUG_DBUSEP

CP0O_DEBUG_CACHEEP

CP0_DEBUG_MCHECKP

CPO_DEBUG_IBUSEP

CPO_DEBUG_COUNTDM

CPO_DEBUG_HALT

CP0_DEBUG_DOZE

CPO_DEBUG_LSNM

CP0_DEBUG_NODCR

CPO_DEBUG_DM

CPO_DEBUG_DBD

CP0O_TRACECONTROL_ON

CPO_TRACECONTROL_MODE

CPO_TRACECONTROL_G

CPO_ TRACECONTROL ASD

CPO_TRACECONTROL U

CPO_TRACECONTROL_0

CPO_TRACECONTROL_K

CPO_TRACECONTROL_E

CPO_TRACECONTROL_D

CPO_TRACECONTROL_IO

CPO_TRACECONTROL_TB

CPO_TRACECONTROL_UT

CPO_TRACECONTROL TS

CPO_TRACECONTROL2 SYP

CPO_TRACECONTROL2 TBU

CPO_TRACECONTROL2 TBI

CPQ TRACECONTROL2 VALDVIODES

CPO USERTRACEDATA DATA

CPO_TRACEBPC_IBPON

CPO_TRACEBPC_IE

CPO_TRACEBPC_DBPON

CPO_TRACEBPC_DE

CPO_DEBUG2_PACO

CP0_DEBUG2_TUP

CPO_DEBUG2_DQ

CP0_DEBUG2_PRM

MikroElektronika

160

mikroPascal PRO for PIC32

Code Optimization

Optimizer has been added to extend the compiler usability, cut down the amount of code generated and speed-up its
execution. The main features are:

Constant folding

All expressions that can be evaluated in the compile time (i.e. constant) are being replaced by their results. (3 + 5 ->
8);

Constant propagation

When a constant value is being assigned to a certain variable, the compiler recognizes this and replaces the use of the
variable by constant in the code that follows, as long as the value of a variable remains unchanged.

Copy propagation
The compiler recognizes that two variables have the same value and eliminates one of them further in the code.

Value numbering

The compiler "recognizes" if two expressions yield the same result and can therefore eliminate the entire computation
for one of them.

"Dead code" ellimination

The code snippets that are not being used elsewhere in the programme do not affect the final result of the application.
They are automatically removed.

Stack allocation

Temporary registers ("Stacks") are being used more rationally, allowing VERY complex expressions to be evaluated
with a minimum stack consumption.

Local vars optimization

No local variables are being used if their result does not affect some of the global or volatile variables.

Better code generation and local optimization

Code generation is more consistent and more attention is payed to implement specific solutions for the code "building
bricks" that further reduce output code size.

Related topics: SSA Optimization, PIC32 specifics, mikroPascal PRO for PIC32 specifics, Memory type specifiers

161 MikroElektronika

mikoPascal PRO for PIC32

Single Static Assignment Optimization

Introduction

In compiler design, static single assignment form (often abbreviated as SSA form or SSA) is an intermediate
representation (IR) in which every variable is assigned exactly once.

An SSA-based compiler modifies the program representation so that every time a variable is assigned in the original
program, a new version of the variable is created.

A new version of the variable is distinguished (renamed) by subscripting the variable name with its version number or
an index, so that every definition of each variable in a program becomes unique.

At a joining point of the control flow graph where two or more different definitions of a variable meet, a hypothetical
function called a phi-function is inserted so that these multiple definitions are merged.

In mikroPascal PRO for PIC32, SSA’'s main goal is in allocating local variables into the RX space (instead onto the
frame).
To do that, SSA has to make an alias and data flow analysis of the Control Flow Graph.

Besides these savings, there are a number of compiler optimization algorithms enhanced by the use of SSA, like :

- Constant Propagation

- Dead Code Elimination
- Global Value Numbering
- Register Allocation

Changes that SSA brings is also in the way in which routine parameters are passed. When the SSA is enabled,
parameters are passed through a part of the RX space which is reserved exclusively for this purpose.

Allocating local variables and parameters in RX space has its true meaning for those architectures with hardware
frame.

Enabling SSA optimization in compiler is done by checking: ¥ Enable 554 optimization : box from the Output Settings Menu.
Lets consider a trivial case :

program Example;

procedure SSA Test(y : integer; k : integer);

begin
if (y+k) then
asm
nop;
end
end;

begin
SSA Test (5,5);
end.

With SSA enabled, procedure ss2 Test is consisted of 3 asm instructions :

MikroElektronika 162

mikroPascal PRO for PIC32

;Example.mpas, 29 :: if (ytk) then
0x9D000000 0x033A1021 ADDU R2, R25, R26
0x9D000004 0x10400002 BEQ R2, RO, L_SSA Test2

0x9D000008 0x70000000 NOP

Without SSA enabled, procedure SSA_Test is consisted of 5 asm instructions :

;Example.mpas, 29 :: if (y+k) then
0x9D000000 0x87A30002 ©LH R3, 2(SP)

0x9D000004 0x87A20000 ©LH R2, 0(SP)

0x9D000008 0x00431021 ADDU R2, R2, R3
0x9D00000C 0x10400002 BEQ R2, RO, L SSA Test2

0x9D000010 0x70000000 NOP

Proper Coding Recommendations

To get the maximum out of the SSA, user should regard the following rules during the coding process :

- Routines should not contain too many parameters (not more than 4 words).

- Don’t change the value of the parameter in the function body (it is better to use a new local variable).

- If the function1 parameters are passed as function2 parameters, then parameter order should remain
the same :

procedure f2(a: integer; b: integer;) { }

procedure fl(x: integer; y: integer;) {
// routine call
£2(x,vy); // x->a and y->b (1 to 1 and 2 to 2) is far more efficient than :
£2 (v, x); // y->a and x->b (1 to 2 and 2 to 1)

}

- Large amount of nested loops and complex structures as its members should be avoided.

- When writing a code in assembly, keep in mind that there are registers reserved exclusively for
routine parameters.

- Using goto and 1abel statements in nested loops should be avoided.

- Obtaining address of the local variable with the global pointer and using it to alter the variable’s address
should be avoided.

Notes :

- emc1 files compiled with or without SSA enabled are fully compatible and can be used and mixed without
any restrictions, except function pointers.

- All function prototypes and function pointers have to be built using the same optimizer because of different
calling conventions in different optimizers. In SSA, function parameters are passed via working registers,
and without SSA they end up on the function frame.

- This means that you cannot have a function implementation which is optimized using SSA optimizer, and to
call this function via function pointer in another module which is optimized using NON-SSA.

When using pointers to functions, compiler must know exactly how to pass function parameters and how to
execute function call.

163

MikroElektronika

mikoPascal PRO for PIC32

Asm code and SSA optimization

If converting code from an earlier version of the compiler, which consists of mixed asm code with the Pascal
code, keep in mind that the generated code can substantially differ when SSA optimization option is enabled
or disabled.

This is due to the fact that SSA optimization uses certain working registers to store routine parameters
(W10-W13), rather than storing them onto the function frame.

Because of this, user must be very careful when writing asm code as existing values in the working registers
used by SSA optimization can be overwritten.
To avoid this, it is recommended that user includes desired asm code in a separate routine.

Debugging Notes

SSA also influences the code debugging in such a way that the local variables will be available in the Watch Window
only in those parts of the procedure where they have useful value (eg. on entering the procedure, variable isn’t available
until its definition).

Variables can be allocated in one part of the procedure in register W4, and in another part of the procedure in register
W2, if the optimizer estimates that it is better that way. That means that the local variable has no static address.

Warning Messages Enhancement

Besides the smaller code, SSA also deals with the intensive code analysis, which in turn has the consequence in
enhancing the warning messages.
For example, compiler will warn the user that the uninitialized variable is used:

void main() {
int y;

if (y) // Variable y might not have been initialized
PORTD = 0;
}

Related topics: Code Optimization, PIC32 Specifics, mikroPascal PRO for PIC32 specifics, Memory type specifiers

MikroElektronika 164

mikroPascal PRO for PIC32

165 MikroElektronika

mikoPascal PRO for PIC32

CHAPTER 7

PIC32 Specifics

In order to get the most from the mikroPascal PRO for PIC32 compiler, the user should be familiar with certain aspects
of PIC32 MCU. This knowledge is not essential, but it can provide a better understanding of the PIC32’s capabilities

and limitations, and their impact on the code writing as well.

MikroElektronika 166

mikroPascal PRO for PIC32

Types Efficiency

First of all, the user should know that PIC32’s ALU, which performs arithmetic operations, is optimized for working with
32-bit types. Also, it performs hardware multiplication and division on the integer level,

so the floating multiplication and division is slower and consumes more memory comparing it to the integer.

The PIC32 supports 64-bit data types, but they are less efficient. They provide higher precision, but lack the code size
and the execution.

Nested Calls Limitations

There are no Nested Calls Limitations, except by RAM size. A Nested call represents a function call within the function
body, either to itself (recursive calls) or to another function.

Recursive calls, as a form of cross-calling, are supported by mikroPascal PRO for PIC32, but they should be used very
carefully. Also calling functions from interrupt is allowed.

Calling function from both interrupt and main thread is allowed. Be careful because this programming technique may
cause unpredictable results if common resources are used in both main and interrupt.

Variable, constant and routine alignment

Simple type variables whose size exceeds 2 byte (int, long, float, double, long double) and those
exceeding 4 bytes are always set to alignment 4.
Routines are always set to aligment 4.

Boot Start-up Initialization
Upon reset, MCU positions at the address 0xBFC00000 on which the BootStartUp function is located.
BootStartUp function configures:

- CPO (coprocessor registers),
- SFR registers associated with the interrupt,
- Stack pointer (R29) and global pointer (R1).

By default the MCU is configured as follows:

- Cache Enabled,

- Prefetch enabled (for executable code and constants),
- Flash waitstates set for specified oscillator frequency,
- Executable code allocated in the KSEGO,

- Data allocated in the KSEG1,

After this start-up function has been executed, MCU will jump into the main routine. Interupts will be set accordingly to
the settings in the Edit Project.

167 MikroElektronika

mikoPascal PRO for PIC32

PIC32 Memory Organization

The PIC32MX microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including
program memory, data memory, SFRs and Configuration registers reside in this address space at their respective
unique addresses.

The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data
memory can be made executable, allowing the PIC32MX to execute from data memory.

Key features of PIC32MX memory organization include the following:

- 32-bit native data width

- Separate User and Kernel mode address spaces.

- Flexible program Flash memory partitioning.

- Flexible data RAM partitioning for data and program space.

- Separate boot Flash memory for protected code.

- Robust bus-exception handling to intercept runaway code.

- Simple memory mapping with Fixed Mapping Translation (FMT) unit.
- Cacheable and non-cacheable address regions.

MikroElektronika 168

mikroPascal PRO for PIC32

PIC32MX Memory Layout

The PIC32MX microcontrollers implement two address spaces: virtual and physical.

All hardware resources, such as program memory, data memory and peripherals, are located at their respective
physical addresses. Peripherals, such as DMA and Flash controllers, use physical addresses and access memory
independently of the CPU.

Virtual addresses are exclusively used by the CPU to fetch and execute instructions. Virtual address space can be
thought as CPU’s logical view and use of its physical resources.

A graphical representation of the PIC32MX virtual and physical memory is shown in picture below:

Virtual Memory Map Physical Memory Map
OxFFFFFFFF OxFFFFFFFF

NOT USED

NOT USED

0xCO000000

W CxBFO00000 +

0xBDO000D0 +

0x4FFFFFFF

INTERNAL BOOT
FLASH

OxBFC00000 i

————+ +— KSEG2/KSEG3 —»

OxBF800000 |

KSEG1

0xBD000000
OxAFFFFFFF

0x40000000

0xADDOO0D0

INTERNAL BOOT
FLASH \ /

ssremeo N\

KSEGO

§:§E§§§ﬂ2‘; AR
RESERVED
INTERNAL BOOT

{ FLASH 0x1FC00000

0X80000000 SN
T ¥ 0x1F800000
2
g % SN / 0x1D000000
. 0x7D000000 + OxOFFFFFFF
@ BMXPUPBA
% OxOFFFFFFF BMXDUDEA

MseONON0N0N NsNONON000

PIC32 Memory Map

169 MikroElektronika

mikoPascal PRO for PIC32

As it can be seem, the entire 4 GB virtual address space is divided into two primary regions: User and Kernel space.
The lower 2 GB of space called USEG/KUSEG, and the upper 2 GB are divided into KSEG0, KSEG1, KSEG2 and
KSEGS.

Virtual vs Physical Addresses

The PIC32MX’s CPU uses virtual addresses to address the peripherals, which means that to access the PIC32MX’s
peripherals we (and the CPU) must be operating within the virtual boundaries of KSEG1.
The PIC32MX’s CPU also uses virtual addressing to fetch and execute program memory instructions.

If you look closely, you'll see that the physical address region between the INTERNAL RAM (at physical address
0x00000000) and the INTERNAL BOOT FLASH (beginning at physical address 0x1FC00000)
is matched up with the virtual memory schemes of KSEGO and KSEG1.

The PIC32MX CPU maps the virtual areas of KSEGO and KSEG1 against the same physical memory area beginning
at physical address 0x00000000.

Because both the KSEG0 and KSEG1 virtual segments point to the same physical memory area, the PIC32MX CPU
can execute instructions from either the KSEGO or KSEG1 virtual memory segment, depending on the cacheable
status of the application (KSEGO0 and USEG-KSEG are cacheable while KSEG1 is not cacheable).

Related topics: Accessing individual bits, SFRs, Memory type specifiers

MikroElektronika 170

mikroPascal PRO for PIC32

Memory Type Specifiers

The mikroPascal PRO for PIC32 supports usage of all memory areas.
Each variable may be explicitly assigned to a specific memory space by including a memory type specifier in the
declaration, or implicitly assigned.

The following memory type specifiers can be used:
- code
- data

- rx (reserved for compiler purposes only)
- sfr

code

Description | The code memory type may be used for allocating constants in program memory.

Example // puts txt in program memory
const txt = “ENTER PARAMETER:?; code;

data

Description | This memory specifier is used when storing variable to the Data RAM.

Example // puts data_buffer in data ram
var data_buffer : char; data;

rx

Description | This memory specifier allows variable to be stored in the working registers space (reserved for compiler
purposes only).

Example // puts y in Rx space
var y : char; rx;

sfr

Description | This memory specifier allows user to access special function registers. It also instructs compiler to
maintain same identifier in source and assembly.

Example var y : char; sfr; // puts y in SFR space

Note : If none of the memory specifiers are used when declaring a variable, data specifier will be set as default by the
compiler.

Related topics: PIC32 Memory Organization, Accessing individual bits, SFRs, Constants, Functions

171 MikroElektronika

mikoPascal PRO for PIC32

Read Modify Write Problem

The Microchip microcontrollers use a sequence known as Read-Modify-Write (RMW) when changing an output state
(1 or 0) on a pin. This can cause unexpected behavior under certain circumstances.

When your program changes the state on a specific pin, for example RB0 in PORTB, the microcontroller first READs
all 8 bits of the PORTB register which represents the states of all 8 pins in PORTB (RB7-RB0).

The microcontroller then stores this data in the MCU. The bit associated with RB that you’'ve commanded to MODIFY
is changed, and then the microcontroller WRITEs all 8 bits (RB7-RB0) back to the PORTB register.

During the first reading of the PORT register, you will be reading the actual state of the physical pin.
The problem arises when an output pin is loaded in such a way that its logic state is affected by the load. Instances of
such loads are LEDs without current-limiting resistors or loads with high capacitance or inductance.

For example, if a capacitor is attached between pin and ground, it will take a short while to charge when the pin is set
to 1.

On the other hand, if the capacitor is discharged, it acts like a short circuit, forcing the pin to ‘0’ state, and, therefore, a
read of the PORT register will return 0, even though we wrote a 1 to it.

Lets analyze the following example:

PORTB.BO
PORTB.B1

1;
1;

Assume that the PORTB is initially set to zero, and that all pins are set to output. Let's say we connect a discharged
capacitor to RBO pin.

The first line, PORTE.BO = 1; will be decoded like in this way:

READ PORTB is read: STORE Data is stored inside a temporary internal
register in the MCU:

] | Store read value

Flaad . e b 1 f——
wom | | OO0 Slelelefefolole) =z
pins ! ra

e o S) — i — —) —) — L)

FORTE
\\ 00000000 Discharged LI LY necsren

I = capacitor

e e e e e e e

Discharged

ﬂl]l]ﬂﬂﬂl]DIﬂ capacitor

MikroElektronika 172

mikroPascal PRO for PIC32

Actual voltage levels on MCU pins are relevant.

MODIFY Datais modified to set the RBO bit: WRITE PORTB is written with the modified data.

The output driver for RBO turns on, and the
Modify value capacitor starts to charge:

L

modified
CEOOO0CN «es e

e s e s o s | e

Write <’ of|oj|ojfolojo]oll1] ResEres

Discharged
unnnannnIc capacitor

Charging
unnnunnnIc capacior

The second line, PORTB.B1 = 1; will be decoded like in this way:

READ PORTB is read:

STORE Because the capacitor is still charging, the
voltage at RBO is still low and reads as a ‘0’

(since we are reading from the pins directly,
not from the PORTB register) :

Store
read Value we didn't expect here
value (but physically still correct ona)

. oollo]o] o ool neezas

Read - | (

fram — 1

pins T_;jf:.:..:..:.:z 000000 0/NEERE

00000000 Charging

I - capacitor Charging

l]l]l'.lﬂl]ﬂl]ﬂl—ﬂ capacitor

Actual voltage levels on MCU pins are relevant.

MODIFY Datais modified to set the bit: WRITE PORTB is written with the new data. The
output driver for RB1 turns on, but the
Modify value driver for RBO turns back off:

Write ojloflojioje]o]1]jo] ressrer

REGISTER
rmodified
value

™

f

nnnnnnnh Charging

T € capacitor

‘| Discharging
ﬂﬂﬂﬂﬂﬂ1ﬂ].—‘i'capa=“ﬂr

173

MikroElektronika

mikoPascal PRO for PIC32

To correct the problem in the code, insert a delay after each PORTE.Bx = 1 line, or modify the entire PORTB register
in a single line PORTE = 0b0O0000O0L1.

This problem can be avoided by using LATx register when writing to ports, rather than using PORTX registers.
Writing to a LATx register is equivalent to writing to a PORTX register, but readings from LATx registers return the
data value held in the port latch, regardless of the state of the actual pin.

For example, lets analyze the following example:

LATB.BO = 1;
LATB.Bl = 1;
The first line, LATB. B0 = 1; will be decoded like in this way:

READ LATB is read: STORE Data is stored inside a temporary internal
register in the MCU:

STore reac value
Read //7
LATB olloflejlo o jo)olle] Reeres
e e (L
c Discharged
I capac“nr o e | e f s s i e o f s s s
Discharged
I capacitor
Actual voltage levels on MCU pins are no longer relevant when using LATx for output
MODIFY Data is modified to set the RBO bit: WRITE LATB is written with the modified data.
The output driver for RBO turns on, and the
Modify value capacitor starts to charge:

Write oflojlojjojlojo]all1) Asees

modified
value

L

L

s s s e o s s e

Discharged

0
i
I capacitor I capacitor

MikroElektronika 174

mikroPascal PRO for PIC32

The second line, LATB.B1 = 1; will be decoded like in this way:

READ LATB is read: STORE Since the voltage levels on MCU pins are no

longer relevant, we get the expected value:

Store
read Expected
value wvalue
Read
from i J. J_
LATE

INTERHAL
'ofloflo]lo] o] o] o] nocruas

. !
- - - — | m— m— c—) — —) m—
Charging

T « capacitor

fa

= o i s o s | s s
c Charging
I capacitor
Actual voltage levels on MCU pins are no longer relevant when using LATx for output
MODIFY Datais modified to set the bit:

WRITE LATB is written with the new data. The

Modify value output driver for RB1 turns on, and the output
driver for RBO remains turned on:

Write o]Jo[lo]lo]lofo1]1 :;'.::*;;

L

i

oflofloflojo]ololl1] neciiFex value

)
ﬁ e e e . T !
Charging | | % i
Ic capacitor Charging

1 I capacitor

When to use LATX instead of PORTX

Depending on your hardware, one may experience unpredictable behavior when using PORTx bits for driving output.

Displays (GLCD, LCD), chip select pins in SPI interfaces and other cases when you need fast and reliable output, LATx
should be used instead of PORTXx.

175 MikroElektronika

mikoPascal PRO for PIC32

CHAPTER 8

mikroPascal PRO for PIC32
Language Reference

- Lexical Elements

- Whitespace
- Comments
- Tokens

- Literals

- Keywords

- ldentifiers

- Punctuators

- Program Organization

- Program Organization
- Scope and Visibility
- Units

- Variables

- Constants

- Labels

- Functions and Procedures

- Functions
- Procedures

- Types

- Simple Types
- Arrays

- Strings

- Pointers

MikroElektronika 176

mikroPascal PRO for PIC32

- Introduction to Pointers
- Function Pointers
- Pointer Arithmetic

- Records
- Types Conversions

- Implicit Conversion
- Explicit Conversion

- Operators
- Introduction to Operators
- Operators Precedence and Associativity
- Arithmetic Operators
- Relational Operators
- Bitwise Operators
- Boolean Operators
- Expressions
- Expressions
- Statements
- Introduction to Statements
- Assignment Statements
- Compound Statements (Blocks)

- Conditional Statements

- If Statement
- Case Statement

- Iteration Statements (Loops)
- For Statement
- While Statement
- Repeat Statement
- Jump Statements
- Break and Continue Statements
- Exit Statement
- Goto Statement
- asm Statement

- Directives

- Compiler Directives
- Linker Directives

177 MikroElektronika

mikoPascal PRO for PIC32

Lexical Elements Overview

The following topics provide a formal definition of the mikroPascal PRO for PIC32 lexical elements. They describe
different categories of word-like units (tokens) recognized by the language.

In the tokenizing phase of compilation, the source code file is parsed (i.e. broken down) into tokens and whitespace.

The tokens in mikroPascal PRO for PIC32 are derived from a series of operations performed on your programs by the
compiler.

Whitespace

Whitespace is a collective name given to spaces (blanks), horizontal and vertical tabs, newline characters and comments.
Whitespace can serve to indicate where tokens start and end, but beyond this function, any surplus whitespace is
discarded.

For example, the two sequences

var i : char;

3 : word;
and
var
i : char;

J : word;

are lexically equivalent and parse identically to give nine tokens:

var
i

char

word

Newline Character
Newline character (CR/LF) is not a whitespace in BASIC, and serves as a statement terminator/separator. In mikroPascal

PRO for PIC32, however, you may use newline to break long statements into several lines. Parser will first try to get the
longest possible expression (across lines if necessary), and then check for statement terminators.

Whitespace in Strings

The ASCII characters representing whitespace can occur within string literals, in which case they are protected from
the normal parsing process (they remain a part of the string). For example,

MikroElektronika 178

mikroPascal PRO for PIC32

some string := 'mikro foo';
parses into four tokens, including a single string literal token:

some string

'mikro foo'

’

Comments

Comments are pieces of a text used to annotate a program, and are technically another form of whitespace. Comments
are for the programmer’s use only. They are stripped from the source text before parsing.

There are two ways to create comments in mikroPascal. You can use multi-line comments which are enclosed with
braces or (* and *):

{ A1l text between left and right brace
constitutes a comment. May span multiple lines. }

(* Comment can be
written in this way too. *)
or single-line comments:

// Any text between a double-slash and the end of the
// line constitutes a comment spanning one line only.

Nested comments

mikroPascal PRO for PIC32 doesn’t allow nested comments. The attempt to nest a comment like this
{ 1 { identifier } : word; }

fails, because the scope of the first open brace “{” ends at the first closed brace “}”. This gives us

: word; }

which would generate a syntax error.

179 MikroElektronika

mikoPascal PRO for PIC32

Tokens

Token is the smallest element of a mikroPascal PRO for PIC32 program, meaningful to the compiler. The parser
separates tokens from the input stream by creating the longest token possible using the input characters in a left-to—
right scan.
mikroPascal PRO for PIC32 recognizes the following kinds of tokens:

- keywords

- identifiers

- constants

- operators
- punctuators (also known as separators)

Token Extraction Example
Here is an example of token extraction. Take a look at the following example code sequence:
end flag := 0;

First, note that end flag would be parsed as a single identifier, rather than as the keyword end followed by the identifier
_flag.

The compiler would parse it as the following four tokens:

end flag // variable identifier
1= // assignment operator
0 // literal

; // statement terminator

Note that : = parses as one token (the longest token possible), not as token : followed by token =.

MikroElektronika

180

mikroPascal PRO for PIC32

Literals
Literals are tokens representing fixed numeric or character values.

The data type of a constant is deduced by the compiler using such clues as numeric value and format used in the
source code.

Integer Literals
Integral values can be represented in decimal, hexadecimal or binary notation.

In decimal notation, numerals are represented as a sequence of digits (without commas, spaces or dots), with optional
prefix + or - operator to indicate the sign. Values default to positive (6258 is equivalent to +6258).

The dollar-sign prefix ($) or the prefix 0x indicates a hexadecimal numeral (for example, $8F or 0x38F).
The percent-sign prefix (%) indicates a binary numeral (for example, 201010000).

Here are some examples:

11 // decimal literal

$11 // hex literal, equals decimal 17
0x11 // hex literal, equals decimal 17
$11 // binary literal, equals decimal 3

The allowed range of values is imposed by the largest data type in mikroPascal PRO for PIC32 — 1ongint. Compiler
will report an error if the literal exceeds 2147483647 (STFFFFEEF).

Floating Point Literals
A floating-point value consists of:
- Decimal integer
- Decimal point
- Decimal fraction
- e or £ and a signed integer exponent (optional)
You can omit either the decimal integer or decimal fraction (but not both).

Negative floating constants are taken as positive constants with the unary operator minus (-) prefixed.

mikroPascal PRO for PIC32 limits floating-point constants to range £1.17549435082 * 10-38 .. +6.80564774407 *
1038.

0. // = 0.0

-1.23 // = -1.23
23.45e6 // = 23.45 * 1076
2e-5 // = 2.0 * 10"-5
3E+10 // = 3.0 * 10710

.09E34 // = 0.09 * 10734

181 MikroElektronika

mikoPascal PRO for PIC32

Character Literals
Character literal is one character from the extended ASCII character set, enclosed with apostrophes.

Character literal can be assigned to variables of the byte and char type (variable of by te will be assigned the ASCII
value of the character). Also, you can assign character literal to a string variable.

Note : Quotes (" ") have no special meaning in mikroPascal PRO for PIC32.

String Literals

String literal is a sequence of characters from the extended ASCII character set, written in one line and enclosed with
apostrophes. Whitespace is preserved in string literals, i.e. parser does not “go into” strings but treats them as single
tokens.

Length of string literal is a number of characters it consists of. String is stored internally as the given sequence of
characters plus a final null character. This null character is introduced to terminate the string, it does not count against
the string’s total length.

String literal with nothing in between the apostrophes (null string) is stored as a single null character.
You can assign string literal to a string variable or to an array of char.

Here are several string literals:

'Hello world!' // message, 12 chars long

'Temperature is stable' // message, 21 chars long

v // two spaces, 2 chars long

c! // letter, 1 char long

v // null string, 0 chars long

The apostrophe itself cannot be a part of the string literal, i.e. there is no escape sequence. You can use the built-in
function Chr to print an apostrophe: chr (39) . Also, see String Splicing.

MikroElektronika 182

mikroPascal PRO for PIC32

Keywords

Keywords are words reserved for special purposes and must not be used as normal identifier names.

Beside standard Pascal keywords, all relevant SFRs are defined as global variables and represent reserved words that
cannot be redefined (for example: w0, TMR1, T1CON, etc). Probe the Code Assistant for specific letters (Ctrl+Space in

Editor) or refer to Predefined Globals and Constants.

Here is the alphabetical listing of keywords in mikroPascal PRO for PIC32:

- absolute

- abstract

- and

- array

- as

- asm

- assembler
- at

- automated
- bdata

- begin

- bit

- case

- cdecl

- class

- code

- compact

- const

- constructor
- contains

- data

- default

- deprecated
- destructor
- dispid

- dispinterface
- div

- dma

- do

- downto

- dynamic

- end

- except

- export

- exports

- external

far

file

final
finalization
finally

for
forward
goto
helper
idata

if

ilevel
implementation
implements
in

index
inherited
initialization
inline
interface
io

is

label
library
message
mod

name

near

nil
nodefault
not

object

of

on
operator
or

org
out
overload
override
package
packed
pascal
pdata
platform
private
procedure
program
property
protected
public
published
raise
read
readonly
record
register
reintroduce
repeat
requires
rx
safecall
sbit
sealed
set

sfr

shl

shr

small
stdcall
stored
string

threadvar
to

try

type

unit
until
uses

var
virtual
volatile
while
with
write
writeonly
xdata

XOor

ydata

Also, mikroPascal PRO for PIC32 includes a number of predefined identifiers used in libraries. You can replace them by
your own definitions, if you plan to develop your own libraries. For more information, see mikroPascal PRO for PIC32

Libraries.

183

MikroElektronika

mikoPascal PRO for PIC32

Identifiers

Identifiers are arbitrary names of any length given to functions, variables, symbolic constants, user-defined data types
and labels. All these program elements will be referred to as objects throughout the help (don't get confused about the
meaning of object in object-oriented programming).

Identifiers can contain the letters a to z and A to Z, underscore character “_", and digits from 0 to 9. The only restriction
is that the first character must be a letter or an underscore.

Case Sensitivity

mikroPascal PRO for PIC32 is not case sensitive, so sum, sum, and suM are equivalent identifiers.

Uniqueness and Scope

Although identifier names are arbitrary (according to the stated rules), if the same name is used for more than one
identifier within the same scope then error arises. Duplicated names are illegal within same scope. For more information,
refer to Scope and Visibility.

Identifier Examples
Here are some valid identifiers:

temperature V1
Pressure

no hit
dat2string
SUM3

_vtext

... and here are some invalid identifiers:

7temp // NO -- cannot begin with a numeral

$higher // NO -- cannot contain special characters

Xor // NO -- cannot match reserved word

323.07.04 // NO -- cannot contain special characters (dot)

MikroElektronika 184

mikroPascal PRO for PIC32

Punctuators

The mikroPascal PRO for PIC32 punctuators (also known as separators) are:

[1- Brackets

() — Parentheses
,— Comma

; — Semicolon

:— Colon

. — Dot

Brackets

Brackets [] indicate single and multidimensional array subscripts:
var alphabet : array[l..30] of byte;

//

alphabet[3] := 'c';

For more information, refer to Arrays.

Parentheses

Parentheses () are used to group expressions, isolate conditional expressions and indicate function calls and function
declarations:

d :=c * (a + b); // Override normal precedence

if (d = z) then ... // Useful with conditional statements

func () ; // Function call, no arguments

function func2(n : word); // Function declaration with parameters

For more information, refer to Operators Precedence and Associativity, Expressions and Functions and Procedures.

Comma

Comma (,) separates the arguments in function calls:

LCD Out (1, 1, txt);

Furthermore, the comma separates identifiers in declarations:
var i, j, k : byte;

The comma also separates elements of array in initialization lists:

const MONTHS : array([l..12] of byte = (31,28,31,30,31,30,31,31,30,31,30,31);

185

MikroElektronika

mikoPascal PRO for PIC32

Semicolon

Semicolon (;) is a statement terminator. Every statement in Pascal must be terminated with a semicolon. The exceptions
are: the last (outer most) end statement in the program which is terminated with a dot and the last statement before end
which doesn't need to be terminated with a semicolon.

For more information, see Statements.

Colon

Colon (:) is used in declarations to separate identifier list from type identifier. For example:

var
i, j : byte;
k : word;

In the program, use the colon to indicate a labeled statement:
start: nop;
goto start;

For more information, refer to Labels.

Dot

Dot (.) indicates an access to a field of a record. For example:
person.surname := 'Smith';

For more information, refer to Records.

Dot is a necessary part of floating point literals. Also, dot can be used for accessing individual bits of registers in
mikroPascal.

MikroElektronika 186

mikroPascal PRO for PIC32

Program Organization

mikroPascal PRO for PIC32 imposes strict program organization. Below you can find models for writing legible and
organized source files. For more information on file inclusion and scope, refer to Units and Scope and Visibility.

Organization of Main Unit

Basically, the main source file has two sections: declaration and program body. Declarations should be in their proper
place in the code, organized in an orderly manner. Otherwise, the compiler may not be able to comprehend the program
correctly.

When writing code, follow the model presented below. The main unit should look like this:

program { program name }
uses { include other units }

//*k*************************k******************************

//* Declarations (globals):
//**

{ constants declarations }
const

{ types declarations }

type

{ variables declarations }

var Name[, Name2...] : ["]type; [absolute 0x123;] [external;] [volatile;] [register;]
[sfr;]

{ labels declarations }

label

{ procedures declarations }

procedure procedure_name(parameter_list);
{ local declarations }
begin
end;

{ functions declarations }

function function name (parameter list) : return type;
{ local declarations }
begin
end;

//‘k*‘k**************‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k************************

//* Program body:

//*k******k*k******************k******************************

begin
{ write your code here }
end.

187 MikroElektronika

mikoPascal PRO for PIC32

Organization of Other Units

Units other than main start with the keyword unit. Implementation section starts with the keyword implementation.

Follow the model presented below:

unit { unit name }
uses { include other units }

//**

//* Interface (globals):

//**********k**

{ constants declarations }
const

{ types declarations }

type

{ variables declarations }

var Name[, Name2...] : ["]type; [absolute 0x123;] [external;] [volatile;]
[sfr;]

{ procedures prototypes }
procedure procedure name ([var] [const] ParamName : [“]type; [var] [const]
ParamName3 : [“]type);

{ functions prototypes }
function function name([var] [const] ParamName : [“]type; [var] [const]
ParamName3 : ["~]type) : ["]type;

//**

//* Implementation:
//***********‘k*********‘k**********************************

implementation

{ constants declarations }
const

{ types declarations }

type

{ variables declarations }

var Name[, Name2...] : ["]type; [absolute 0x123;] [external;] [volatile;]
[sfr;]

{ labels declarations }

label
{ procedures declarations }
procedure procedure name ([var] [const] ParamName : [“]type; [var] [const]
ParamName3 : ["]type); [ilevel 0x123;] [overload;] [forward;]
{ 1local declarations }
begin
end;

[register;]

ParamName?2,

ParamName?2,

[register;]

ParamName?2,

MikroElektronika

188

mikroPascal PRO for PIC32

{ functions declarations }
function function name ([var] [const] ParamName : [“]type; [var] [const] ParamName2,
ParamName3 : ["]type) : ["]type; [ilevel 0x123;] [overload;] [forward;]

{ local declarations }

begin

end;

end.

Note :
- Constants, types and variables used in the implementation section are inaccessible to other units. This feature is not
applied to the procedures and functions in the current version, but it will be added to the future ones.

- Functions and procedures must have the same declarations in the interface and implementation section. Otherwise,
compiler will report an error.

Scope and Visibility

Scope

The scope of an identifier is a part of the program in which the identifier can be used to access its object. There are
different categories of scope, which depends on how and where identifiers are declared:

Place of declaration Scope

Identifier is declared in the declaration of a | Scope extends from the point where it is declared to the end of the
program, function, or procedure current block, including all blocks enclosed within that scope. Identifiers
in the outermost scope (file scope) of the main unit are referred to as
globals, while other identifiers are locals.

Identifier is declared in the interface section | Scope extends the interface section of a unit from the point where it is
of a unit declared to the end of the unit, and to any other unit or program that
uses that unit.

Identifier is declared in the implementation | Scope extends from the point where it is declared to the end of the unit.
section of a unit, but not within the block of | The identifier is available to any function or procedure in the unit.
any function or procedure

Visibility

The visibility of an identifier is that region of the program source code from which legal access to the identifier’s
associated object can be made.

Scope and visibility usually coincide, though there are circumstances under which an object becomes temporarily
hidden by the appearance of a duplicate identifier, i.e. the object still exists but the original identifier cannot be used to
access it until the scope of the duplicate identifier is ended.

Technically, visibility cannot exceed scope, but scope can exceed visibility

189 MikroElektronika

mikoPascal PRO for PIC32

Name Spaces

Name space is a scope within which an identifier must be unique. The mikroPascal PRO for PIC32 uses two distinct
categories of identifiers:

1. Global variables are visible throughout the whole unit, from the place of declaration. Also. they can be seen in

other units, if they are declared above the Implementation section.
2. Local variables, parameters, types, function results - must be unique within the block in which they are declared.

For example:
var level : byte;

procedure control (sens : byte);
var location : byte;

begin
location := 1;
sens := location;
level := 123;
end;

procedure temperature;

begin
location := 0; // ILLEGAL
sens := 23; // ILLEGAL: redefinition of sens
level := 95;

end;

MikroElektronika 190

mikroPascal PRO for PIC32

Units

In mikroPascal PRO for PIC32, each project consists of a single project file and one or more unit files. Project file, with
extension .mpp32 contains information about the project, while unit files, with extension .mpas, contain the actual
source code.

Units allow you to:

- break large programs into encapsulated parts that can be edited separately,
- create libraries that can be used in different projects,
- distribute libraries to other developers without disclosing the source code.

Each unit is stored in its own file and compiled separately. Compiled units are linked to create an application. In order
to build a project, the compiler needs either a source file or a compiled unit file (. emc 1 file) for each unit.

Uses Clause

mikroPascal PRO for PIC32 includes units by means of the uses clause. It consists of the reserved word uses, followed
by one or more comma-delimited unit names, followed by a semicolon. Extension of the file should not be included.
There can be at most one uses clause in each source file, and it must appear immediately after the program (or unit)
name.

Here’s an example:
uses utils, strings, Unit2, MyUnit;

For the given unit name, the compiler will check for the presence of .emc1 and .mpas files, in order specified by the
search paths.

- If both .mpas and .emc1 files are found, the compiler will check their dates and include the newer one in the
project. If the .mpas file is newer than .emc1, a new library will be written over the old one;

- If only .mpas file is found, the compiler will create the . emc1 file and include it in the project;

- Ifonly .emc1 file is present, i.e. no source code is available, the compiler will include it as it is found;

- If none found, the compiler will issue a “File not found” warning.

Main Unit

Every project in mikroPascal PRO for PIC32 requires a single main unit file. The main unit file is identified by the
keyword program at the beginning; it instructs the compiler where to “start”.

After you have successfully created an empty project with the Project Wizard, the Code Editor will display a new main
unit. It contains the bare-bones of the Pascal program:

program MyProject;

{ main procedure }
begin

{ Place program code here }
end.

191 MikroElektronika

mikoPascal PRO for PIC32

Nothing should precede the keyword program except comments. After the program name, you can optionally place the
uses clause.

Place all global declarations (constants, variables, types, labels, routines) before the keyword begin.

Other Units

Units other than main start with the keyword unit. Newly created blank unit contains the bare-bones:
unit MyUnit;

implementation

end.

Other than comments, nothing should precede the keyword uni t. After the unit name, you can optionally place the
uses clause.

Interface Section

Part of the unit above the keyword implementation is referred to as interface section. Here, you can place global
declarations (constants, variables, labels and types) for the project.

You do not define routines in the interface section. Instead, state the prototypes of routines (from implementation
section) that you want to be visible outside the unit. Prototypes must match the declarations exactly.

Implementation Section

Implementation section hides all irrelevant innards from other units, allowing encapsulation of code.

Everything declared below the keyword implementation is private, i.e. has its scope limited to the file. When you
declare an identifier in the implementation section of a unit, you cannot use it outside the unit, but you can use it in any

block or routine defined within the unit.

By placing the prototype in the interface section of the unit (above the implementation) you can make the routine
public, i.e. visible outside of unit. Prototypes must match the declarations exactly.

MikroElektronika 192

mikroPascal PRO for PIC32

Variables

Variable is an object whose value can be changed during the runtime. Every variable is declared under unique name
which must be a valid identifier. This name is used for accessing the memory location occupied by a variable.

Variables are declared in the declaration part of the file or routine — each variable needs to be declared before being
used. Global variables (those that do not belong to any enclosing block) are declared below the uses statement, above
the keyword begin.

Specifying a data type for each variable is mandatory. Syntax for variable declaration is:

var identifier list : type;

Here, identifier list is a comma-delimited list of valid identifiers and type can be any data type.

For more details refer to Types and Types Conversions. For more information on variables’ scope refer to the chapter
Scope and Visibility.

Pascal allows shortened syntax with only one keyword var followed by multiple variable declarations. For example:

var i, j, k : byte;
counter, temp : word;
samples : array[100] of word;

External Modifier

Use the external modifier to indicate that the actual place and initial value of the variable, function or procedure body,
is defined in a separate source code unit.

For example, lets create a project which will calculate circle area and will have function and procedure definition in two
different units, and a call to these routines in the third, separate unit.

So, the project will be consisted of the main unit, Main Unit.mpas and First Unit.mpas and Second Unit.
mpas units.

In the Main Unit we will define routine called » squared (calculates radius squared). Also, both units must be
included in the Main_Unit :

program Main Unit;
uses First Unit, Second Unit; // Include both used units

function r squared(r : real) : real; // Definition of the r squared routine
begin

result := r*r;
end;

begin
CircleArea(); // CircleArea routine call
end.

193 MikroElektronika

mikoPascal PRO for PIC32

In the First_Unit we will define and declare routine called pi_r_squared (calculates pi multiplied by the radius
squared):

unit First Unit;
procedure pi r squared(rr : real); // Declaration of the pi r squared routine
implementation

procedure pi r squared(rr : real); // Definition of the pi r squared routine
var res : real;

begin
res := rr*3.14;
end;

end.

In the Second_Unit we will make a call to the routines defined externally (r squaredandpi r sguared). Firstofall,
we must declare their prototypes followed with a external modifier. Then, we can proceed to the routine call :

unit Second Unit;

procedure CircleArea();

function r squared(r : real) : real; external; // Declaration of the r squared routine
(defined in Main Unit) followed with a external modifier
procedure pi r squared(rr : real); external; // Declaration of the pi r squared

routine (defined in First Unit) followed with a external modifier

implementation
procedure CircleArea(); // Definition of the CircleArea routine
var res : real;
begin
res := r squared(5); // r_squared routine call
pi r squared(res); // pi_r squared routine call
end;
end.

Variables and PIC32

Every declared variable consumes part of RAM memory. Data type of variable determines not only the allowed range
of values, but also the space a variable occupies in RAM memory. Bear in mind that operations using different types of
variables take different time to be completed. mikroPascal PRO for PIC32 recycles local variable memory space — local
variables declared in different functions and procedures share the same memory space, if possible.

There is no need to declare SFRs explicitly, as mikroPascal PRO for PIC32 automatically declares relevant registers
as global variables of volatile word see SFR for details.

MikroElektronika 194

mikroPascal PRO for PIC32

Constants

Constant is a data whose value cannot be changed during the runtime. Using a constant in a program consumes no
RAM memory. Constants can be used in any expression, but cannot be assigned a new value.

Constants are declared in the declaration part of a program or routine. You can declare any number of constants after
the keyword const:

const constant name [: type] = value;

Every constant is declared under unique constant name which must be a valid identifier. It is a tradition to write
constant names in uppercase. Constant requires you to specify value, which is a literal appropriate for the given type.
type is optional and in the absence of type, the compiler assumes the “smallest” of all types that can accommodate
value.

Note : You cannot omit t ype when declaring a constant array.

Pascal allows shorthand syntax with only one keyword const followed by multiple constant declarations. Here’s an
example:

const
MAX : longint = 10000;
MIN = 1000; // compiler will assume word type
SWITCH = 'n'; // compiler will assume char type
MSG = 'Hello'; // compiler will assume string type
MONTHS : array[l..12] of byte = (31,28,31,30,31,30,31,31,30,31,30,31);

195 MikroElektronika

mikoPascal PRO for PIC32

Labels
Labels serve as targets for goto statements. Mark the desired statement with a label and colon like this:
label identifier : statement

Before marking a statement, you must declare a label. Labels are declared in declaration part of unit or routine, similar
to variables and constants. Declare labels using the keyword 1abel:

label labell, ..., labeln;
Name of the label needs to be a valid identifier. The label declaration, marked statement, and goto statement must
belong to the same block. Hence it is not possible to jump into or out of a procedure or function. Do not mark more than
one statement in a block with the same label.
Here is an example of an infinite loop that calls the Beep procedure repeatedly:
label loop;
loop:
Beep;
goto loop;
Note : Label should be followed by end of line (CR) otherwise compiler will report an error.

label loop;

loop: Beep; // compiler will report an error
loop: // compiler will report an error

MikroElektronika 196

mikroPascal PRO for PIC32

Functions and Procedures

Functions and procedures, collectively referred to as routines, are subprograms (self-contained statement blocks)
which perform a certain task based on a number of input parameters. When executed, a function returns a value while
procedure does not.

Functions
A function is declared like this:

function function name (parameter list) : return type;
{ local declarations }

begin
{ function body }

end;

function name represents a function’s name and can be any valid identifier. return type is a type of return
value and can be any simple type or complex type. Within parentheses, parameter 1list is a formal parameter list
very similar to variable declaration. In Pascal, parameters are always passed to a function by the value. To pass an
argument by address, add the keyword var ahead of identifier.

Local declarations are optional declarations of variables and/or constants, local for the given function. Function
body is a sequence of statements to be executed upon calling the function.

Calling a function

Afunction is called by its name, with actual arguments placed in the same sequence as their matching formal parameters.
The compiler is able to coerce mismatching arguments to the proper type according to implicit conversion rules. Upon
a function call, all formal parameters are created as local objects initialized by values of actual arguments. Upon return
from a function, a temporary object is created in the place of the call and it is initialized by the value of the function
result. This means that function call as an operand in complex expression is treated as the function result.

In standard Pascal, a function name is automatically created local variable that can be used for returning a value of
a function. mikroPascal PRO for PIC32 also allows you to use the automatically created local variable result to assign
the return value of a function if you find function name to be too ponderous. If the return value of a function is not defined
the compiler will report an error.

Function calls are considered to be primary expressions and can be used in situations where expression is expected.
A function call can also be a self-contained statement and in that case the return value is discarded.

Example
Here’s a simple function which calculates x" based on input parameters x and n (n > 0):

function power(x, n : byte) : longint;
var i : byte;
begin
i := 0; result := 1;
if n > 0 then
for i := 1 to n do result := result*x;
end;

197 MikroElektronika

mikoPascal PRO for PIC32

Now we could call it to calculate, say, 312:

tmp := power (3, 12);

Procedures
Procedure is declared like this:
procedure procedure name (parameter list);
{ local declarations }
begin
{ procedure body }
end;
procedure name represents a procedure’s name and can be any valid identifier. Within parentheses, parameter
list is a formal parameter list very similar to variable declaration. In Pascal, parameters are always passed to a
procedure by the value — to pass an argument by address, add the keyword var ahead of identifier.

Local declarations are optional declaration of variables and/or constants, local for the given procedure. Procedure
body is a sequence of statements to be executed upon calling the procedure.

Calling a procedure

A procedure is called by its name, with actual arguments placed in the same sequence as their matching formal
parameters. The compiler is able to coerce mismatching arguments to the proper type according to implicit conversion
rules. Upon procedure call, all formal parameters are created as local objects initialized by the values of actual
arguments.

Procedure call is a self-contained statement.

Example
Here’s an example procedure which transforms its input time parameters, preparing them for output on Lcd:

procedure time prep (var sec, min, hr : byte);

begin
sec := ((sec and $F0) shr 4)*10 + (sec and S$OF);
min = ((min and S$F0) shr 4)*10 + (min and SOF);
hr := ((hr and sr0) shr 4)*10 + (hr and $0F);
end;

A function can return a complex type. Follow the example bellow to learn how to declare and use a function which
returns a complex type.

MikroElektronika 198

mikroPascal PRO for PIC32

Example:

This example shows how to declare a function which returns a complex type.

program Example;

type TCircle = record // Record
CenterX, CenterY: word;
Radius: byte;

end;

var MyCircle: TCircle; // Global variable

function DefineCircle(x, y: word; r: byte): TCircle; // DefineCircle function returns a
Record

begin
result.CenterX := x;
result.CenterY := vy;
result.Radius
end;

r;

begin

MyCircle := DefineCircle (100, 200, 30); // Get a Record via function
call

MyCircle.CenterX := DefineCircle (100, 200, 30).CenterX + 20; // Access a Record field
via function call

/7 e \ | ————- \

/7 \ \

// Function returns TCircle Access to one field of TCircle
end.

Forward declaration

A function can be declared without having it followed by it's implementation, by having it followed by the forward
procedure. The effective implementation of that function must follow later in the unit. The function can be used after a
forward declaration as if it had been implemented already. The following is an example of a forward declaration:

program vVolume;

var Volume : word;

function First(a, b : word) : word; FTorward;
function Second(c : word) : word;
var tmp : word;
begin
tmp := First (2, 3);
result := tmp * c;
end;

199 MikroElektronika

mikoPascal PRO for PIC32

function First(a, b : word) : word;
begin

result := a * b;
end;

begin

Volume := Second (4);
end.

Functions reentrancy

Functions reentrancy is allowed. Remember that the PIC32 have memory limitations that can vary between MCUs.

Types

Pascal is strictly typed language, which means that every variable and constant need to have a strictly defined type,
known at the time of compilation.

The type serves:

- to determine the correct memory allocation required,
- to interpret the bit patterns found in the object during subsequent accesses,
- in many type-checking situations, to ensure that illegal assignments are trapped.

mikroPascal PRO for PIC32 supports many standard (predefined) and user-defined data types, including signed and
unsigned integers of various sizes, arrays, strings, pointers and records.

Type Categories
Types can be divided into:

- simple types
- arrays

- strings

- pointers

- records

MikroElektronika 200

mikroPascal PRO for PIC32

Simple Types

Simple types represent types that cannot be divided into more basic elements and are the model for representing

elementary data on machine level. Basic memory unit in mikroPascal PRO for PIC32 has 32 bits.

Here is an overview of simple types in mikroPascal PRO for PIC32:

Type Size Range

bit 1-bit Oor1

sbhit 1-bit Oor1

byte, char 8-bit 0..255

short 8-bit -127 ..128

word 16-bit 0..65535

integer 16-bit -32768 .. 32767

dword 32-bit 0 .. 4294967295

longint 32-bit -2147483648 .. 2147483647

real 32-bit +1.17549435082 * 10-38
16.80564774407 * 1038

int64 64-bit -9223372036854775808
9223372036854775807

uinte64 64—bit 0 .. 18446744073709551615

You can assign signed to unsigned or vice versa only using the explicit conversion. Refer to Types Conversions for

more information.

Derived Types

The derived types are also known as structured types. They are used as elements in creating more complex user-

defined types.
The derived types include:
- arrays

- pointers
- records

201

MikroElektronika

mikoPascal PRO for PIC32

Arrays

An array represents an indexed collection of elements of the same type (called the base type). Because each element
has a unique index, arrays, unlike sets, can meaningfully contain the same value more than once.

Array Declaration
Array types are denoted by constructions in the following form:
array[index start .. index end] of type

Each of the elements of an array is numbered from index start through index end. The specifier index start
can be omitted along with dots, in which case it defaults to zero.

Every element of an array is of type and can be accessed by specifying array name followed by element’s index within
brackets.

Here are a few examples of array declaration:

var
weekdays : array[l..7] of byte;
samples : array[50] of word;
begin
// Now we can access elements of array variables, for example:
samples[0] := 1;
if samples[37] = 0 then
Constant Arrays

Constant array is initialized by assigning it a comma-delimited sequence of values within parentheses. For example:

// Declare a constant array which holds number of days in each month:
const MONTHS : array([l..12] of byte = (31,28,31,30,31,30,31,31,30,31,30,31);

The number of assigned values must not exceed the specified length. The opposite is possible, when the trailing
“excess” elements are assigned zeroes.

For more information on arrays of char, refer to Strings.

Multi-dimensional Arrays

Multidimensional arrays are constructed by declaring arrays of array type. These arrays are stored in memory in such
way that the right most subscript changes fastest, i.e. arrays are stored “in rows”. Here is a sample 2-dimensional
array:

m : array[5] of array[10] of byte; // 2-dimensional array of size 5x10

Avariable mis an array of 5 elements, which in turn are arrays of 10 byte each. Thus, we have a matrix of 5x10 elements
where the first elementis m[0] [0] and lastoneism[4] [9]. The first element of the 4th row would be m[3] [0].

MikroElektronika 202

mikroPascal PRO for PIC32

Strings

A string represents a sequence of characters equivalent to an array of char. It is declared like this:

string name : string[length]

The specifier 1ength is a number of characters the string consists of. The string is stored internally as the given
sequence of characters plus a final nu11 character (zero) which is introduced to terminate the string. It does not count
against the string’s total length.

Anull string (' ') is stored as a single null character.

You can assign string literals or other strings to string variables. String on the right side of an assignment operator has
to be shorter or of equal length than the one on the right side. For example:

var
msgl : string[20];
msg2 : string[19];

begin
msgl := 'This is some message';
msg2 := 'Yet another message';
msgl := msg2; // this is ok, but vice versa would be illegal

Alternately, you can handle strings element—by—element. For example:
var s : string[5];
:= 'mik';

is char literal 'm'
is char literal 'i'
is char literal 'k'
is zero

is undefined

g w N O

is undefined

~ n 0 O n n n ~n -

Be careful when handling strings in this way, since overwriting the end of a string will cause an unpredictable
behavior.

String Concatenating

mikroPascal PRO for PIC32 allows you to concatenate strings by means of plus operator. This kind of concatenation is
applicable to string variables/literals, character variables/literals. For control characters, use the non-quoted hash sign
and a numeral (e.g. #13 for CR).

203 MikroElektronika

mikoPascal PRO for PIC32

var msg : string[20];
res _txt : string([5];
res, channel : word;

begin
/..

// Get result of ADC
res := Adc_ Read(channel) ;

// Create string out of numeric result
WordToStr (res, res txt);

// Prepare message for output

msg := 'Result is ' + // Text "Result is"
res_txt ; // Result of ADC
VA
Notes :

- In current version plus operator for concatenating strings will accept at most two operands.
- mikroPascal PRO for PIC32 includes a String Library which automatizes string related tasks.

Pointers

A pointer is a data type which holds a memory address. While a variable accesses that memory address directly, a
pointer can be thought of as a reference to that memory address.

To declare a pointer data type, add a carat prefix (*) before type. For example, in order to create a pointer to an
integer, write:

“integer;

In order to access data at the pointer’'s memory location, add a carat after the variable name. For example, let’s declare
variable p which points to a word, and then assign value 5 to the pointed memory location:

var p : “word;

A pointer can be assigned to another pointer. However, note that only the address, not the value, is copied. Once you
modify the data located at one pointer, the other pointer, when dereferenced, also yields modified data.

Pointers and memory spaces

Pointers can point to data in any available memory space.
Pointers can reside in any available memory space except in program (code) memory space.

MikroElektronika 204

mikroPascal PRO for PIC32

var ptrl: ~const byte; // ptrl pointer in data space pointing to a
byte in code space

var ptr2: ~const ~volatile sfr byte; rx; // ptr2 is pointer in rx space pointing to a
pointer in code space pointing to volatile byte in sfr space

var ptr3: ~data byte; code; // error, pointers can not be placed in code
space

Due to backward compatibility, pointers to program memory space can also be declared within constant declaration
block (using keyword const):

program const ptr;

// constant array will be stored in program memory

const b array: array[5] of byte = (1,2,3,4,5);
const ptr: “byte; // ptr is pointer to program memory space
begin
ptr := @b _array; // ptr now points to b array([0]
PORTA := ptr”";
ptr := ptr + 3; // ptr now points to b _array[3]
PORTA := ptr”";
end.

This leads to equality of the following declarations:

var ptrl : ~const byte; // ptrl pointer in data space pointing to a byte in code
space
const ptr2 : “byte; // ptr2 pointer in data space pointing to a byte in code
space

Therefore, when declaring a pointer within constant declaration block, const qualifier refers to pointed object, not to
pointer itself.

Notes :
- Pointer to constant space (Flash memory) is allocated in RAM.

- Constants of a simple type are not allocated in the Flash memory nor in RAM, but changed in the compile time, and
therefore address of a such constant can not be obtained.

Function Pointers

Function pointers are allowed in mikroPascal PRO for PIC32. The example shows how to define and use a function
pointer:

Example:

Example demonstrates the usage of function pointers. It is shown how to declare a procedural type, a pointer to
function and finally how to call a function via pointer.

205 MikroElektronika

mikoPascal PRO for PIC32

program Example;

type TMyFunctionType = function (paraml, param2: byte; param3: word) : word; // First,
define the procedural type
var MyPtr: "TMyFunctionType; // This is a pointer to previously defined type

Sample: word;

function Funcl (pl, p2: byte; p3: word): word; // Now, define few functions
which will be pointed to. Make sure that parameters match the type definition
begin

result := pl and p2 or p3; // return something

end;
function Func?2 (abc: byte; def: byte; ghi: word): word; // Another function of the
same kind. Make sure that parameters match the type definition
begin

result := abc * def + ghi; // return something
end;
function Func3 (first, yellow: byte; monday: word): word; // Yet another function. Make
sure that parameters match the type definition
begin

result := monday - yellow - first; // return something
end;

// main program:

begin

MyPtr := @Funcl; // MyPtr now points to Funcl

Sample := MyPtr~ (1, 2, 3); // Perform function call via pointer, call Funcl,
the return value is 3

MyPtr := @Func2; // MyPtr now points to Func?2

Sample := MyPtr~ (1, 2, 3); // Perform function call via pointer, call Func2,
the return value is 5

MyPtr := QFunc3; // MyPtr now points to Func3

Sample := MyPtr~ (1, 2, 3); // Perform function call via pointer, call Func3,
the return value is 0
end.

Therefore, when declaring a pointer within constant declaration block, const qualifier refers to pointed object, not to
pointer itself.

MikroElektronika 206

mikroPascal PRO for PIC32

@ Operator

The @ operator constructs a pointer to its operand. The following rules are applied to @:
- If X is a variable, @x returns a pointer to x.
Note : If variable x is of array type, the @ operator will return pointer to it's first basic element, except when the left side
of the statement in which % is used is an array pointer.

In this case, the @ operator will return pointer to array, not to it's first basic element.

program example;

var w . word;
ptr b : “byte;
ptr arr : “array[10] of byte;
arr : array[10] of byte;
begin
ptr b := @arr; // @ operator will return “byte
w := @arr; // @ operator will return “byte
ptr arr := @arr; // @ operator will return "“array[l10] of byte
end.

- If F is a routine (a function or procedure), @F returns a pointer to .

Related topics: Pointer Arithmetic

Pointer Arithmetic

Pointer arithmetic in the mikroPascal PRO for PIC32 is limited to:
- assigning one pointer to another,
- comparing two pointers,
- comparing pointer to zero,

- adding/subtracting pointer and an integer value,
- subtracting two pointers.

Assignment and Comparison

The simple assignment operator (=) can be used to assign value of one pointer to another if they are of the same
type.

Assigning the integer constant 0 to a pointer assigns a null pointer value to it.

Two pointers pointing to the same array may be compared by using relational operators =, <>, <, <=, > and >=.
Results of these operations are the same as if they were used on subscript values of array elements in question:

207 MikroElektronika

mikoPascal PRO for PIC32

var ptrl : “byte;
ptr2 : "“byte;

a : array[10] of byte; // array a containing 10 elements of type byte

begin

ptrl := Qal4];

ptr2 := Qal2];

if (ptrl = ptr2) then ... // won't be executed as 4 is not equal to 2

if (ptrl > ptr2) then ... // will be executed as 4 is greater than 2

if (ptrl® = ptr2”) then ... // if the value pointed to by ptrl is equal to the value
pointed to by ptr2

if (ptrl” > ptr2”) then ... // if the value pointed to by ptrl is greater to the value
pointed to by ptr2

end.

Note : Comparing pointers pointing to different objects/arrays can be performed at programmer’s own responsibility —
a precise overview of data’s physical storage is required.

Pointer Addition

You can use Inc to add an integral value to a pointer. The result of addition is defined only if the pointer points to an
element of an array and if the result is a pointer pointing to the same array (or one element beyond it).

If a pointer is declared to point to type, adding an integral value n to the pointer increments the pointer value by n *
sizeof (type) as long as the pointer remains within the legal range (first element to one beyond the last element). If
type has a size of 10 bytes, then adding 5 to a pointer to type advances the pointer 50 bytes in memory.

For example:
var
a : array[10] of byte; // array a containing 10 elements of type byte
ptr : “byte; // pointer to byte
begin
ptr := Qa[0]; // ptr is pointer to byte, pointing to a[0]
ptr := ptr + 3; // ptr+3 is a pointer pointing to al3]
ptr® := 6; // al[3] now equals 6
Inc (ptr); // ptr now points to the next element of array a: al4]
end.

Also, you may sum values pointed to by pointers.
For example:

var
i, j, x : Dbyte; // variables
ptrl : “byte; // pointers to byte
ptr2 : "“byte;

begin
i := 10; // assign value 10 to variable; i is at the address 0x0038

MikroElektronika 208

mikroPascal PRO for PIC32

j 1= 5; // assign value 10 to variable; j is at the address 0x003A

ptrl := @i; // ptrl is pointer to byte, pointing to i

ptr2 := @j; // ptr2 is a pointer pointing to j

X := ptrl”® + ptr2”; // result is equal to the sum of the values pointed to; x = 5
end.

Pointer Subtraction
Similar to addition, you can use Dec to subtract an integral value from a pointer.

If a pointer is declared to point to type, subtracting an integral value n from the the pointer decrements the pointer value
by n * sizeof (type) as long as the pointer remains within the legal range (first element to one beyond the last
element). If type has a size of 10 bytes, then subtracting 5 from a pointer to type pushes back the pointer 50 bytes in
memory.

For example:
var
a : array[10] of byte; // array a containing 10 elements of type byte
ptr : “byte; // pointer to byte
begin
ptr = Qal[6]; // ptr is pointer to byte, pointing to al[6]
ptr := ptr - 3; // ptr-3 is a pointer pointing to al[3]
ptr” := 6; // al[3] now equals 6
Dec (ptr) ; // ptr now points to the previous element of array a: al[2]
end.

Also, you may subtract two pointers. The difference will be equal to the distance between two pointed addresses, and
is calculated regarding to the type which the pointer points to.

For example:
var
i, 3, x : Dbyte; // variables
ptrl : “byte; // pointers to byte

ptr2 : “byte;

begin

i := 10; // assign value 10 to variable; i is at the address 0x0039

j 1= 5; // assign value 5 to variable; J is at the address 0x003A
ptrl := @i; // ptrl is a pointer to byte, pointing to i

ptr2 := @j; // ptr2 is a pointer pointing to j

X 1= ptr2 - ptrl; // result is equal to the distance between the two pointed ad-
dresses; x = 1 (1 byte)

X 1= ptrl” - ptr2”; // result is equal to the difference of the values pointed to;
x =5
end

209 MikroElektronika

mikoPascal PRO for PIC32

Records

A record (analogous to a structure in some languages) represents a heterogeneous set of elements. Each element is
called a field. The declaration of the record type specifies a name and type for each field. The syntax of a record type
declaration is

type recordTypeName = record
fieldListl : typel;

fieldListn : typen;
end;
where recordTypeName is a valid identifier, each type denotes a type, and each fie1dList is a valid identifier or a
comma-delimited list of identifiers. The scope of a field identifier is limited to the record in which it occurs, so you don’t
have to worry about naming conflicts between field identifiers and other variables.

Note : In mikroPascal PRO for PIC32, you cannot use the record construction directly in variable declarations, i.e.
without type.

For example, the following declaration creates a record type called TDot:

type
Thot = record
X, y : real;

end;

Each TDot contains two fields: x and y coordinates. Memory is allocated when you declare the record, like this:
var m, n: TDot;

This variable declaration creates two instances of TDot, called m and n.

A field can be of previously defined record type. For example:

// Structure defining a circle:

type
TCircle = record
radius : real;
center : TDot;

end;

Accessing Fields

You can access the fields of a record by means of dot (.) as a direct field selector. If we have declared variables
circlel and circle? of previously defined type TCircle:

var circlel, circle2 : TCircle;

we could access their individual fields like this:

MikroElektronika 210

mikroPascal PRO for PIC32

circlel.radius := 3.7;
circlel.center.x := 0;
circlel.center.y := 0;

Accessing the fields is possible via the with statement as well.
You can also commit assignments between complex variables, if they are of the same type:

circle2 := circlel; // This will copy values of all fields

Types Conversions

Conversion of variable of one type to a variable of another type is typecasting. mikroPascal PRO for PIC32 supports
both implicit and explicit conversions for built-in types.

Implicit Conversion
Compiler will provide an automatic implicit conversion in the following situations:

- statement requires an expression of particular type (according to language definition), and we use an expression of
different type,

- operator requires an operand of particular type, and we use an operand of different type,

- function requires a formal parameter of particular type, and we pass it an object of different type,

- resul t does not match the declared function return type.

Promotion

When operands are of different types, implicit conversion promotes the less complex type to more complex type taking
the following steps:

bit - Dbyte/char
byte/char - word
short — integer
short - longint
integer - longint
integer - real

Higher bytes of extended unsigned operand are filled with zeroes. Higher bytes of extended signed operand are filled
with bit sign (if number is negative, fill higher bytes with one, otherwise with zeroes). For example:

var a : byte; b : word;

a := SFF;
b := a; // a is promoted to word, b becomes SO0FF

211 MikroElektronika

mikoPascal PRO for PIC32

Clipping

In assignments and statements that require an expression of particular type, destination will store the correct value only
if it can properly represent the result of expression, i.e. if the result fits in destination range.

If expression evaluates to a more complex type than expected, excess of data will be simply clipped (higher bytes are
lost).

var i : byte; j : word;

/...
j := SFFOF;
i:=3; // 1 becomes $0F, higher byte $FF is lost

Explicit Conversion
Explicit conversion can be executed at any point by inserting type keyword (byte, word, short, integer, longint or real)
ahead of an expression to be converted. The expression must be enclosed in parentheses. Explicit conversion can be

performed only on the operand right of the assignment operator.

Special case is conversion between signed and unsigned types. Explicit conversion between signed and unsigned data
does not change binary representation of data — it merely allows copying of source to destination.

For example:
var a : byte; b : short;

b := -1;
byte(b); // a is 255, not 1

a

// This is because binary representation remains
// 11111111; it's just interpreted differently now

You can’t execute explicit conversion on the operand left of the assignment operator:

word(b) := a; // Compiler will report an error

Conversions Examples
Here is an example of conversion:
program test;

type TBytePtr = “byte;

var arr: array[10] of word;
ptr : TBytePtr;

var a, b, cc : byte;
dd : word;

MikroElektronika 212

mikroPascal PRO for PIC32

begin
a := 241;
b := 128;
cc :=a + b; // equals 113
cc := word(a + b); // equals 113
dd := a + b; // equals 369
ptr := TBytePtr (@arr);
ptr := "“byte(Qarr);

end.

Type Specifier

The specifier type introduces a synonym for a specified type. The type declarations are used to construct shorter or
more convenient names for types already defined by the language or declared by the user.

The specifier type stands first in the declaration:

type synonym = <type definition>;

The type keyword assigns synonymto <type definition>. The synonym needs to be a valid identifier.

A declaration starting with the type specifier does not introduce an object or a function of a given type, but rather a
new name for a given type. In other words, the type declaration is identical to a “normal” declaration, but instead of
objects, it declares types. It is a common practice to name custom type identifiers with starting capital letter — this is
not required by the mikroPascal PRO for PIC32.

For example:

// Let’s declare a synonym for “byte”
type Distance = byte;

// Now, synonym “Distance” can be used as type identifier:
var i : Distance; // declare variable i of byte

213 MikroElektronika

mikoPascal PRO for PIC32

Type Qualifiers

The type qualifiers const and volatile are optional in declarations and do not actually affect the type of declared
object.

Qualifier const

The qualifier const implies that a declared object will not change its value during runtime. In declarations with the
const qualifier all objects need to be initialized.

The mikroPascal PRO for PIC32 treats objects declared with the const qualifier the same as literals or preprocessor
constants. If the user tries to change an object declared with the const qualifier compiler will report an error.

For example:

const PI : byte := 3.14159;

Qualifier volatile

The qualifier volatile implies that a variable may change its value during runtime independently from the program. Use
the volatile modifier to indicate that a variable can be changed by a background routine, an interrupt routine, or I/O port.
Declaring an object to be volatile warns the compiler not to make assumptions concerning the value of an object while
evaluating expressions in which it occurs because the value could be changed at any moment.

Operators

Operators are tokens that trigger some computation when being applied to variables and other objects in an
expression.

There are four types of operators in mikroPascal PRO for PIC32:

- Arithmetic Operators
- Bitwise Operators

- Boolean Operators

- Relational Operators

MikroElektronika 214

mikroPascal PRO for PIC32

Operators Precedence and Associativity

There are 4 precedence categories in mikroPascal PRO for PIC32. Operators in the same category have equal
precedence with each other.

Each category has an associativity rule: left-to-right (—), or right-to-left («). In the absence of parentheses, these rules
resolve the grouping of expressions with operators of equal precedence.

Precedence Operands Operators Associativity
4 1 @ not + - -
3 2 * / div mod and shl shr —
2 2 + - or XOr N
1 2" = <> < > <= >= —

Arithmetic Operators

Arithmetic operators are used to perform mathematical computations. They have numerical operands and return
numerical results. Since the char operators are technically bytes, they can be also used as unsigned operands in
arithmetic operations.

All arithmetic operators associate from left to right.

Operator | Operation Operands Result
+ addition byte, short, word, integer, |byte, short, word,
longint, dword, real integer, longint, dword,
real
- subtraction byte, short, word, integer, | byte, short, word, integer,
longint, dword, real longint, dword, real
* |nuMpHcaﬁon byte, short, word, integer, | word, integer, longint,
longint, dword, real dword, real
/ division, floating-point byte, short, word, integer, [real
longint, dword, real
div division, rounds down to|byte, short, word, integer, |byte, short, word,
nearest integer longint, dword integer, longint, dword
mod modulus,returnstheremainder | byte, short, word, integer, |byte, short, word,
of integer division (cannot be longint, dword integer, longint, dword
used with floating points)

Division by Zero

If 0 (zero) is used explicitly as the second operand (i.e. = div 0), the compiler will report an error and will not generate

code.

But in case of implicit division by zero: x div vy, wherey is 0 (zero), the result will be the maximum integer (i.e 255, if
the result is byte type; 65536, if the result is word type, etc.).

215

MikroElektronika

mikoPascal PRO for PIC32

Unary Arithmetic Operators

Operator - can be used as a prefix unary operator to change sign of a signed value. Unary prefix operator + can be
used, but it doesn’t affect data.

For example:

b := -a;

Relational Operators
Use relational operators to test equality or inequality of expressions. All relational operators return TRUE or FATSE.
All relational operators associate from left to right.

Relational Operators Overview

Operator Operation

= equal

<> not equal

> greater than

< less than

>= greater than or equal
<= less than or equal

Relational Operators in Expressions

Precedence of arithmetic and relational operators is designated in such a way to allow complex expressions without
parentheses to have expected meaning:

a+ 5> c¢c-1.0/ e // - (a + 5) > (c - (1.0 / e))

MikroElektronika 216

mikroPascal PRO for PIC32

Bitwise Operators

Use bitwise operators to modify individual bits of numerical operands.

Bitwise operators associate from left to right. The only exception is the bitwise complement operator not which associates
from right to left.

Bitwise Operators Overview

Operator | Operation

and bitwise AND; compares pairs of bits and returns 1 if both bits are 1, otherwise it returns 0

or bitwise (inclusive) OR; compares pairs of bits and generates a 1 result if either or both bits are 1,
otherwise it returns 0

xor bitwise exclusive OR (XOR); compares pairs of bits and generates a 1 resultif the bits are complementary,
otherwise it returns 0

not bitwise complement (unary); inverts each bit

shl bitwise shift left; moves the bits to the left, discards the far left bit and assigns 0 to the right most bit.

shr bitwise shift right; moves the bits to the right, discards the far right bit and if unsigned assigns 0 to the
left most bit, otherwise sign extends

Logical Operations on Bit Level

and 0 1 or 0 1 xor not
0 0 0 1 0
1 0 1 1 1

Bitwise operators and, or, and xor perform logical operations on the appropriate pairs of bits of their operands. The

operator not complements each bit of its operand. For example:

$1234 and $5678

{ because

$1234
$5678

0001 0010 0011
0101 0110 0111

// equals $1230

0100
1000

that

0001 0010 0011

is, $1230 }

// Similarly:

$1234 or

$5678

$1234 XOor $5678

not $123

4

0000

// equals $567C
// equals $444C
// equals SEDCB

217

MikroElektronika

mikoPascal PRO for PIC32

Unsigned and Conversions

If a number is converted from less complex to more complex data type, the upper bytes are filled with zeroes. If a
number is converted from more complex to less complex data type, the data is simply truncated (the upper bytes are
lost).

For example:

var a : byte; b : word;

a SAA;
b := SFOF0;
b
{

:= b and a;
a 1s extended with zeroes; b becomes $00A0 }

Signed and Conversions

If number is converted from less complex to more complex data type, the upper bytes are filled with ones if sign bit is
1 (number is negative); the upper bytes are filled with zeroes if sign bit is 0 (number is positive). If number is converted
from more complex to less complex data type, the data is simply truncated (the upper bytes are lost).

For example:

var a : byte; b : word;

a := -12;

b := S$T70FF;
b := b and a;

{ a is sign extended, with the upper byte equal to S$FF;
b becomes $70F4 }

Bitwise Shift Operators

Binary operators sh 1 and shr move the bits of the left operand by a number of positions specified by the right operand,
to the left or right, respectively. Right operand has to be positive and less than 255.

With shift left (sh1), left most bits are discarded, and “new” bits on the right are assigned zeroes. Thus, shifting
unsigned operand to the left by n positions is equivalent to multiplying it by 2n if all discarded bits are zero. This is also
true for signed operands if all discarded bits are equal to the sign bit.

With shift right (shr), right most bits are discarded, and the “freed” bits on the left are assigned zeroes (in case of
unsigned operand) or the value of the sign bit (in case of signed operand). Shifting operand to the right by n positions
is equivalent to dividing it by 2.

MikroElektronika 218

mikroPascal PRO for PIC32

Boolean Operators

Although mikroPascal PRO for PIC32 does not support boolean type, you have Boolean operators at your disposal for
building complex conditional expressions. These operators conform to standard Boolean logic and return either TRUE
(all ones) or FALSE (zero):

Operator Operation

and logical AND

or logical OR

xor logical exclusive OR (XOR)
not logical negation

Boolean operators associate from left to right. Negation operator not associates from right to left.

Unary Operators

Unary operators are operators that take exactly one argument.

Unary Arithmetic Operator

Operator - can be used as a prefix unary operator to change sign of a signed value. Unary prefix operator + can be
used also, but it doesn’t affect data.

For example:

b := -a;

Unary Bitwise Operator

The result of the not (bitwise negation) operator is the bitwise complement of the operand. In the binary representation
of the result, every bit has the opposite value of the same bit in the binary representation of the operand.

Operator Operation

not bitwise complement (unary); inverts each bit
Example:
not 0x1234 ‘' equals O0xEDCB

Address and Indirection Operator

In the mikroPascal PRO for PIC32, address of an object in memory can be obtained by means of an unary operator .
To reach the pointed object, we use an indirection operator ~ on a pointer. See Pointers section for more details.

219 MikroElektronika

mikoPascal PRO for PIC32

Operator | Operation

A

accesses a value indirectly, through a pointer; result is
the value at the address to which operand points

@ constructs a pointer to its operand

See Pointers for more details on this subject

Note : Besides these, sizeof and explicit conversion unary operators are supported also.

Sizeof Operator

The prefix unary operator sizeof returns an integer constant that represents the size of memory space (in bytes) used
by its operand (determined by its type, with some exceptions).

The operator sizeof can take either a type identifier or an unary expression as an operand. You cannot use sizeof with

expressions of function type, incomplete types, parenthesized names of such types, or with Ivalue that designates a
bit field object.

Sizeof Applied to Expression

If applied to expression, the size of an operand is determined without evaluating the expression (and therefore without
side effects). The result of the operation will be the size of the type of the expression’s result.

Sizeof Applied to Type

If applied to a type identifier, sizeof returns the size of the specified type. The unit for type size is sizeof(byte) which is
equivalent to one byte.

Thus:

sizeof (byte) // returns 1
sizeof (integer) // returns 2
sizeof (dword) // returns 4
sizeof (real) // returns 4

When the operand is a non-parameter of array type, the result is the total number of bytes in the array (in other words,
an array name is not converted to a pointer type):

var i, j : integer;
samples : array[10] of integer;

sizeof (samples[1]); // j = sizeof (integer) = 2
sizeof (samples) ; // 1 10*sizeof (integer) = 20

]
i

If the operand is a parameter declared as array type or function type, sizeof gives the size of the pointer. When
applied to records, sizeof gives the total number of bytes, including any padding. The operator sizeof cannot be
applied to a function.

MikroElektronika 220

mikroPascal PRO for PIC32

Expressions

An expression is a sequence of operators, operands and punctuators that returns a value.

The primary expressions include: literals, constants, variables and function calls. More complex expressions can be
created from primary expressions by using operators. Formally, expressions are defined recursively: subexpressions
can be nested up to the limits of memory.

Expressions are evaluated according to certain conversion, grouping, associativity and precedence rules which depend
on the operators in use, presence of parentheses and data types of the operands. The precedence and associativity

of the operators are summarized in Operator Precedence and Associativity. The way operands and subexpressions
are grouped does not necessarily specify the actual order in which they are evaluated by mikroPascal PRO for PIC.

Expression Evaluation

General Rule

Expression are evaluated according to the right side operands. Operations are done at higher operand level, with
signed operands taking precedence.

Example :
a : byte;
: word;
c : integer;

* b // word level
* ¢ // integer level
b * ¢ // integer level

U]

Left side exception

In arithmetic expression left side is considered in the following manner : If the left side size in bytes is greater than
higher operand size, then evaluation is done at one level above higher operand level (to get correct calculations).

Example :

a: dword;
b: byte;

a := b * 5; // this is done at word level

221 MikroElektronika

mikoPascal PRO for PIC32

Conditional expressions
Conditional expressions may differ from the same code in assignment expressions (due to left side exception).
Example :

a: dword;

b: byte

if b*5 then... // byte level - general rule will not give same result as
a :=b *5 // word level - general rule + left side exception

if a then...

if b*5 exceeds byte range.

Explicit Typecasting

Any expression can be evaluated at specific level by using explicit typecasting. Having in mind previous example, in
order to get same calculation in conditional and assignment expression, the following should be done :

if word(b*5) then... // word level

Statements

Statements define algorithmic actions within a program. Each statement needs to be terminated with a semicolon
(;)- In the absence of specific jump and selection statements, statements are executed sequentially in the order of
appearance in the source code.

The most simple statements are assignments, procedure calls and jump statements. These can be combined to form
loops, branches and other structured statements.

Refer to:

- Assignment Statements

- Compound Statements (Blocks)
- Conditional Statements

- Iteration Statements (Loops)

- Jump Statements

- asm Statement

MikroElektronika 222

mikroPascal PRO for PIC32

Assignment Statements
Assignment statements have the following form:
variable := expression;

The statement evaluates expression and assigns its value to variable. All the rules of implicit conversion are applied.
Variable can be any declared variable or array element, and expression can be any expression.

Do not confuse the assignment with relational operator = which tests for equality. Also note that, although similar, the
construction is not related to the declaration of constants.

Compound Statements (Blocks)
Compound statement, or block, is a list of statements enclosed by keywords begin and end:
begin

statements

end;

Syntactically, a block is considered to be a single statement which is allowed to be used when Pascal syntax requires
a single statement. Blocks can be nested up to the limits of memory.

For example, the while loop expects one statement in its body, so we can pass it a compound statement:

while 1 < n do

begin
temp ali];
ali] := blil;
b[i] := temp;
i =1+ 1;
end;

Conditional Statements

Conditional or selection statements select one of alternative courses of action by testing certain values. There are two
types of selection statements:

- if

- case

223 MikroElektronika

mikoPascal PRO for PIC32

If Statement
Use the keyword if to implement a conditional statement. The syntax of the if statement has the following form:
if expression then statementl [else statement2]

If expression evaluates to true then statement1 executes. If expression is false then statement2 executes. The
expression must convert to a boolean type; otherwise, the condition is ill-formed. The else keyword with an alternate
statement (statement?) is optional.

There should never be a semicolon before the keyword e1se.

Nested if statements

Nested if statements require additional attention. A general rule is that the nested conditionals are parsed starting from
the innermost conditional, with each 1 se bound to the nearest available i f on its left:

if expressionl then
if expression2 then statementl
else statement2

The compiler treats the construction in this way:

if expressionl then

begin
if expression2 then statementl
else statement?

end

In order to force the compiler to interpret our example the other way around, we have to write it explicitly:

if expressionl then
begin
if expression2 then statementl
end
else statement2

MikroElektronika 224

mikroPascal PRO for PIC32

Case Statement

Use the case statement to pass control to a specific program branch, based on a certain condition. The case statement
consists of a selector expression (a condition) and a list of possible values. The syntax of the case statement is:

case selector of

value 1 : statement 1

value n : statement n

[else default statement]
end;

selector is an expression which should evaluate as integral value. values can be literals, constants, or expressions,
and statements can be any statements.

The e1se clause is optional. If using the else branch, note that there should never be a semicolon before the keyword
else.

First, the se1lector expression (condition) is evaluated. Afterwards the case statement compares it against all available
values. If the match is found, the statement following the match evaluates, and the case statement terminates. In
case there are multiple matches, the first matching statement will be executed. If none of values matches selector, then
default statement in the else clause (if there is some) is executed.

Here’s a simple example of the case statement:

case operator Of

'*" : result := nl * n2;
'/' : result := nl / n2;
'+' : result := nl + n2;
'-'" : result := nl - n2
else result := 0;
end;

Also, you can group values together for a match. Simply separate the items by commas:

case reg of

0: opmode := 0;

1,2,3,4: opmode := 1;

5,6,7: opmode := 2;
end;

In mikroPascal PRO for PIC32, values in the case statement can be variables too:
case byte variable of
byte varl: opmode := 0; // this will be compiled correctly
byte var2:
opmode := 1; // avoid this case, compiler will parse
// a variable followed by colon sign as label
byte var3: // adding a comment solves the parsing problem

opmode := 2;
end;

Nested Case statement

Note that the case statements can be nested — values are then assigned to the innermost enclosing case statement.

225 MikroElektronika

mikoPascal PRO for PIC32

lteration Statements

lteration statements let you loop a set of statements. There are three forms of iteration statements in mikroPascal PRO
for PIC32:

- for
- while...do
- repeat

You can use the statements break and continue to control the flow of a loop statement. break terminates the statement
in which it occurs, while continue begins executing the next iteration of the sequence.

For Statement

The for statement implements an iterative loop and requires you to specify the number of iterations. The syntax of the
for statement is:

for counter := initial value to final value do statement list
// or
for counter := initial value downto final value do statement list

counter is a variable which increments (or decrements if you use downto) with each iteration of the loop. Before
the first iteration, counteris setto initial value and will increment (or decrement) until it reaches final value.
final value will be recalculated each time the loop is reentered.

This way number of loop iterations can be changed inside the loop by changing final_value. With each iteration,
statement list will be executed.

initial value andfinal value should be expressions compatible with counter.

If final value is a complex expression whose value can not be calculated in compile time and number of loop
iterations is not to be changed inside the loop by the means of final value, it should be calculated outside the for
statement and result should be passed as for statement’s final value. statement list is a list of statements
that do not change the value of counter. If statement 1ist contains more than one statement, statements must be
enclosed within begin-end block.

Here is an example of calculating scalar product of two vectors, a and b, of length 10, using the for statement:

for i := 0 to 9 do
s := s + a[i] * b[i];

Endless Loop
The for statement results in an endless loop if final value equals or exceeds the range of the counter’s type.

More legible way to create an endless loop in Pascal is to use the statement whille TRUE do.

MikroElektronika 226

mikroPascal PRO for PIC32

While Statement
Use the while keyword to conditionally iterate a statement. The syntax of the while statement is:

while expression do statement

statement is executed repeatedly as long as expression evaluates true. The test takes place before the statement
is executed. Thus, if expression evaluates false on the first pass, the loop does not execute.

Here is an example of calculating scalar product of two vectors, using the while statement:

s = 0; 1 := 0;

while i < n do

begin
s :=s + af[i] * bli]l:
i =1+ 1;

end;

Probably the easiest way to create an endless loop is to use the statement:

while TRUE do ...;

Repeat Statement
The repeat statement executes until the condition becomes true. The syntax of the repeat statement is:
repeat statement until expression

statement is executed repeatedly as long as expression evaluates false. The expression is evaluated after each
iteration, so the loop will execute statement at least once.

Here is an example of calculating scalar product of two vectors, using the repeat statement:

s := 0; 1 := 0;
repeat
begin
s :=s + a[i] * bli]:
i =14+ 1;
end;

until i = n;

227 MikroElektronika

mikoPascal PRO for PIC32

Jump Statements

The jump statement, when executed, transfers control unconditionally. There are four such statements in mikroPascal
PRO for PIC32:

- break

- continue
- exit

- goto

asm Statement

mikroPascal PRO for PIC32 allows embedding assembly in the source code by means of the asm statement. Note that
you cannot use numerals as absolute addresses for register variables in assembly instructions. You may use symbolic
names instead (listing will display these names as well as addresses).

You can group assembly instructions with the a sm keyword:

asm
block of assembly instructions
end;

The only types whose name remains the same in asm as it is in the mikroPascal PRO for PIC32 are registers, e.g.
INTCON, PORTB, WREG, GIE, etc.

mikroPascal PRO for PIC32 comments are allowed in embedded assembly code.

Accessing variables
Depending on the place of declaration, accessing a variable can be done in several ways :

- Accessing global variable :

1. If declared under implementation section (visible only in the file where it was declared) : <source file
name> <variable name>.

2. If declared in the interface section (visible throughout the whole project) : <variable name>.

3. If accessing registers (declared through register, rx or sfr specifiers, visible throughout the whole project) :
<variable name>.

- Accessing local variable : <routine name> <variable name>.

- Accessing routine parameter : FARG <routine name> <variable name>.

MikroElektronika 228

mikroPascal PRO for PIC32

Here is an example of using asm instructions :

program asm example;

var myvar : word; absolute 0x2678;

const msg = 'Hello'; org 0x3678;
var myvarl : dword;

procedure proc(); org 0x1234;

begin
asm
nop
end;
end;
begin
myvar := 5;
myvarl := OxABCD1234;
asm
MOV myvar, w0
nop
MOV #6, WO

MOV W0, myvar
MOV #lo addr (myvar), wl
it to Wl (0x2678 -> Wl)
MOV #hi addr(myvar), Wl
move it to Wl (0x0000 -> Wl1)
MOV #lo_addr (_proc), WO
move it to WO (0x0001 -> Wl)
MOV #lo_addr(msg), WO
and move it to WO (0x3652 -> W1l)
MOV myvarl+2, w0
move it to Wl (0OxABCD -> W1)
end;
end.

Asm code and SSA optimization

’

’

move myvar to WO

move literal 6 to WO
move contents of WO to myvar

retrieve low address word of myvar and move

retrieve hi address byte of routine proc

’

’

’

retrieve high address word of myvar

retrieve low address word of constant

accessing hi word of myvarl variable

and

and

msg

and

If asm code is mixed with the Pascal code, keep in mind that the generated code can substantially differ when SSA

optimization option is enabled or disabled.

This is due to the fact that SSA optimization uses certain working registers to store routine parameters (W10-W13),

rather than storing them onto the function frame.

Because of this, user must be very careful when writing asm code as existing values in the working registers used by

SSA optimization can be overwritten.

To avoid this, it is recommended that user includes desired asm code in a separate routine.

229

MikroElektronika

mikoPascal PRO for PIC32

With Statement

The With statement is a convenient method for referencing elements of a complex variable, such as a record.

It simplifies the code by removing the need to prefix each referenced element with the complex variable name; i.e.
accessing all of the record's fields with only one reference.

Example:

program With Test;

type Circle Parameters =

Record
x_center : integer;
y _center : integer;
radius : integer;
end;
var Circle : Circle Parameters;
begin
With Circle do
begin
X _center := 50;
y center := 60;
radius = 10;
end;
end.
Directives

Directives are words of special significance which provide additional functionality regarding compilation and output.
The following directives are at your disposal:

- Compiler directives for conditional compilation,
- Linker directives for object distribution in memory.

Compiler Directives

mikroPascal PRO for PIC32 treats comments beginning with a “s” immediately following an opening brace as a compiler
directive; for example, {sE1.sE}. The compiler directives are not case sensitive.

You can use a conditional compilation to select particular sections of code to compile, while excluding other sections.
All compiler directives must be completed in the source file in which they have begun.

MikroElektronika 230

mikroPascal PRO for PIC32

Directives $SDEFINE and $UNDEFINE

Use directive sDEFINE to define a conditional compiler constant (“flag”). You can use any identifier for a flag, with no
limitations. No conflicts with program identifiers are possible because the flags have a separate name space. Only one
flag can be set per directive.

For example:
{SDEFINE Extended format}
Use sUNDEFINE to undefine (“clear”) previously defined flag.

Note : Pascal does not support macros; directives SDEFINE and SUNDEFINE do not create/destroy macros. They only
provide flags for directive SIFDEF to check against.

Directives $IFDEF, $IFNDEF, $SELSE and $ENDIF

Conditional compilation is carried out by the S1DEF and SIFNDEF directives. $TFDEE tests whether a flag is currently
defined, and s TFNDEF if the flag is not defined, i.e. whether a previous SDEFTNE directive has been processed for that
flag and is still in force.

Directives SIFDEF and $IEFNDEF are terminated with the SENDIFE directive and can have an optional SELSE clause:

{SIFDEF flag}

<block of code>
{SELSE}

<alternate block of code>
{SENDIF}

First, sIFDEF checks if flag is defined by means of SDEFINE. If so, only <block of code> will be compiled.
Otherwise, <alternate block of code> will be compiled. sENDIF ends the conditional sequence. The result of
the preceding scenario is that only one section of code (possibly empty) is passed on for further processing.

The processed section can contain further conditional clauses, nested to any depth; each $T7DEF must be matched
with a closing SENDIFE.

Here is an example:

// Uncomment the appropriate flag for your application:
//{SDEFINE resolutionlO}
//{SDEFINE resolutionl2}

{SIFDEF resolutionlO}
// <code specific to 10-bit resolution>
{SELSE}
{SIFDEF resolutionl?2}
// <code specific to 12-bit resolution>
{SELSE}
// <default code>
{SENDIF}
{SENDIF}

231 MikroElektronika

mikoPascal PRO for PIC32

Unlike sTFDEF, sTFNDEF checks if flag is not defined by means of $SDEFINE, thus producing the opposite results.

Include Directive $I

The $I parameter directive instructs mikroPascal PRO for PIC32 to include the named text file in the compilation. In
effect, the file is inserted in the compiled text right after the {$1 filename} directive. If filename does not specify a
directory path, then, in addition to searching for the file in the same directory as the current unit, mikroPascal PRO for

PIC32 will search for file in order specified by the search paths.

To specify a filename that includes a space, surround the file name with quotation marks: {ST "My file"}.

There is one restriction to the use of include files: An include file can't be specified in the middle of a statement part. In

fact, all statements between the begin and end of a statement part must exist in the same source file.

See also Predefined Project Level Defines.

Linker Directives

mikroPascal PRO for PIC32 uses an internal algorithm to distribute objects within memory. If you need to have a

variable, constant or a routine at the specific predefined address, use the linker directives cbsolute and org.

When using these directives, be sure to use them in proper memory segments, i.e. for functions it is the KSEGO and

for variables it is the KSEG1. Linker directives are used with the virtual addresses.

Directive absolute

Directive absolute specifies the starting address in RAM for a variable. If the variable is multi-byte, higher bytes will be

stored at the consecutive locations.
Directive absolute is appended to declaration of a variable:

// Variable x will occupy 1 word (16 bits) at address 0xA0000000
var x : word; absolute 0xA0000000;

// Variable y will occupy 2 words at addresses 0xA0000000 and 0xA0000002
var y : longint; absolute 0xA0000000;

Be careful when using the absolute directive, as you may overlap two variables by accident. For example:

// Variable i will occupy 1 word at address 0xA0000002;
var 1i : word; absolute 0xA0000002;

// Variable will occupy 2 words at 0xA0000000 and 0xA0000002; thus,
// changing i changes jj at the same time and vice versa
var jj : longint; absolute 0xA0000000;

MikroElektronika

232

mikroPascal PRO for PIC32

Directive org

Directive org specifies the starting address of a constant or a routine in ROM. It is appended to the constant or a routine
declaration.

To place a constant array in Flash memory, write the following :

// Constant array MONTHS will be placed starting from the address 0x9D000000

const MONTHS : array[l..12] of byte = (31,28,31,30,31,30,31,31,30,31,30,31); org
0x800;

If you want to place simple type constant into Flash memory, instead of following declaration:

const SimpleConstant : byte = O0xAA; org 0x9D000000;

use an array consisting of single element :

const SimpleConstant : array[l] of byte = (0xAA); org 0x9D000000;

In first case, compiler will recognize your attempt, but in order to save Flash space, and boost performance, it will
automatically replace all instances of this constant in code with it's literal value.

In the second case your constant will be placed in Flash in the exact location specified.

To place a routine on a specific address in Flash memory you should write the following :

procedure proc(par : byte); org 0x9D000000;

begin

// Procedure will start at address 0x9D000000;

end;

org directive can be used with ma in routine too. For example:

program Led Blinking;

begin org 0x9D000000; // main procedure starts at 0x9D000000

end.

Directive orgall
Use the orgall directive to specify the address above which all routines and constants will be placed. Example:
begin

orgall (0x9D000000); // All the routines, constants in main program will be above the

address 0x9D000000

end.

233 MikroElektronika

mikoPascal PRO for PIC32

CHAPTER 9

mikroPascal PRO for PIC32
Libraries

mikroPascal PRO for PIC32 provides a set of libraries which simplify the initialization and use of PIC32 and their
modules:

Use Library manager to include mikroPascal PRO for PIC32 Libraries in you project.

MikroElektronika 234

mikroPascal PRO for PIC32

Hardware Libraries

- ADC Library

- CANSPI Library

- Compact Flash Library

- Epson S1D13700 Graphic Lcd Library
- Flash Memory Library

- Graphic Lcd Library

- I?C Library

- Keypad Library

- Lcd Library

- Manchester Code Library

- Memory Manager Library

- Multi Media Card Library

- OneWire Library

- Port Expander Library

- PS/2 Library

- PWM Library

- RS-485 Library

- Software I2C Library

- Software SPI Library

- Software UART Library

- Sound Library

- SPI Library

- SPI Ethernet Library

- SPI Ethernet ENC24J600 Library
- SPI Graphic Lcd Library

- SPI Lcd Library

- SPI Lcd8 Library

- SPI1 T6963C Graphic Lcd Library
- T6963C Graphic Lcd Library
- TFT Display Library

- Touch Panel Library

- Touch Panel TFT Library

- UART Library

- USB Library

Miscellaneous Libraries

- Button Library

- Conversions Library
- PrintOut Library

- Setjmp Library

- Sprint Library

- Time Library

- Trigonometry Library

See also Built-in Routines.

235 MikroElektronika

mikoPascal PRO for PIC32

Hardware Libraries

- ADC Library

- CANSPI Library

- Compact Flash Library

- Epson S1D13700 Graphic Lcd Library
- Flash Memory Library

- Graphic Lcd Library

- I?C Library

- Keypad Library

- Lcd Library

- Manchester Code Library

- Memory Manager Library

- Multi Media Card Library

- OneWire Library

- Port Expander Library

- PS/2 Library

- PWM Library

- RS-485 Library

- Software I2C Library

- Software SPI Library

- Software UART Library

- Sound Library

- SPI Library

- SPI Ethernet Library

- SPI Ethernet ENC24J600 Library
- SPI Graphic Lcd Library

- SPI Lcd Library

- SPI Lcd8 Library

- SPI1 T6963C Graphic Lcd Library
- T6963C Graphic Lcd Library
- TFT Display Library

- Touch Panel Library

- Touch Panel TFT Library

- UART Library

- USB Library

MikroElektronika 236

mikroPascal PRO for PIC32

ADC Library

ADC (Analog to Digital Converter) module is available with a number of PIC32 MCU modules. ADC is an electronic
circuit that converts continuous signals to discrete digital numbers. ADC Library provides you a comfortable work with
the module.

Library Routines

-ADC1_Init

- ADC1_Init_Advanced
-ADC1_Get_Sample
-ADC1_Read

ADC1_Init

Prototype |procedure ADCI Init();

Description | This routines configures ADC module to work with default settings.
The internal ADC module is set to:

- single channel conversion

- 10-bit conversion resolution
- unsigned integer data format
- auto-convert

- VRef+ : AVdd, VRef- : AVss
- instruction cycle clock

- conversion clock : 32*Tcy

- auto-sample time : 31TAD

Parameters | None.

Returns Nothing.
Requires - MCU with built-in ADC module.
Example ADC1 Init(); // Initialize ADC module with default settings

Notes None.

237 MikroElektronika

mikoPascal PRO for PIC32

ADC1_Init_Advanced

Prototype procedu re ADCl Init Advanced(Reference : word);
Description | This routine configures the internal ADC module to work with user defined settings.
Parameters | - Reference: voltage reference used in ADC process.
Description Predefined library const
Voltage reference:

Internal voltage reference _ADC_INTERNAL REF

External voltage reference _ADC_EXTERNAL REF
Returns Nothing.
Requires - The MCU with built-in ADC module.
Example ADCl Init Advanced(ADC_ INTERNAL REF); // set internal reference used
Notes - Not all MCUs support advanced configuration. Please, read the appropriate datasheet before utilizing

this library.

ADC1_Get_Sample

Prototype function ADC1 Get Sample(channel : word) : word;

Description | The function enables ADC module and reads the specified analog channel input.

Parameters | - channel represents the channel from which the analog value is to be acquired.

Returns 10-bit unsigned value from the specified channel.

Requires - The MCU with built-in ADC module.
- Prior to using this routine, ADC module needs to be initialized. See ADCx_Init and ADCx_Init_
Advanced.
- Before using the function, be sure to configure the appropriate TRISx bits to designate pins as
inputs.

Example var adc_value : word;
adc_value = ADCl Get Sample (10); // read analog value from ADC module
channel 10

Notes - The function sets the appropriate bit in the AD1PCFG registers to enable analog function of the
chosen pin.
- Refer to the appropriate Datasheet for channel-to-pin mapping.

MikroElektronika

238

mikroPascal PRO for PIC32

ADC1_Read
Prototype function ADC1 Read(channel : word) : word;
Description | The function initializes, enables ADC module and reads the specified analog channel input.
Parameters | - channel represents the channel from which the analog value is to be acquired.
Returns 10-bit unsigned value from the specified channel.
Requires - The MCU with built-in ADC module.
- Before using the function, be sure to configure the appropriate TRISx bits to designate pins as
inputs.
Example var adc value : word;
adc_value = ADCl Read(10); // read analog value from ADC module channel 10
Notes - This is a standalone routine, so there is no need for a previous initialization of ADC module.
- The function sets the appropriate bit in the ADPCFG registers to enable analog function of the
chosen pin.
- Refer to the appropriate Datasheet for channel-to-pin mapping.

239

MikroElektronika

mikoPascal PRO for PIC32

Library Example
This code snippet reads analog value from the channel 1 and sends readings as a text over UART1.
Copy Code To Clipboard

program Temperature_Sensor;

// LCD module connections

var LCD_RS : sbit at LATB2 bit;
var LCD_EN : sbit at LATB3_bit;
var LCD D4 : sbit at LATB4 bit;
var LCD_D5 : sbit at LATB5 bit;
var LCD_D6 : sbit at LATB6_bit;
var LCD D7 : sbit at LATB7 bit;

var LCD_RS_Direction : sbit at TRISB2_bit;
var LCD_EN Direction : sbit at TRISB3 bit;
var LCD_D4 Direction : sbit at TRISB4_bit;
var LCD_D5_Direction : sbit at TRISB5_bit;
var LCD D6 Direction : sbit at TRISB6 bit;
var LCD_D7 Direction : sbit at TRISB7_bit;
// End LCD module connections

var temp : real;
txt : array[20] of char;

// Convert ADC value to Celsius degrees format
function ADC_to_degC() : real;

begin
result := ADC1 _Get_ Sample(8); // Read ADC value from AN8 pin
result = (((3.25/1024) * result - 0.5) * 100);
end;
begin
CHECON := 0x32;
AD1PCFG := OxFFF7; // Configure AN8 pin as analog 1/0
ADC1_Init(Q); // Initialize ADC
Delay_100ms();
Led_Init(Q); // Initialize LCD
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Cmd(_LCD_CURSOR_OFF); // Turn cursor off

Lcd Out(l, 1, ° Temperature:);

while(TRUE) do

begin
temp := ADC_to_degCQ); // Convert ADC value to Celsius degrees format
FloatToStr(temp, txt);
Lcd_Chr(2,13,223); // Print degree character, “C” for Centigrades
// Different LCD displays have different char code for degree
Lcd_Chr(2,14,°C?); // ITf you see greek alpha letter try typing
178 instead of 223
Lcd_Out(2, 5, txt); // Display value on the LCD
Delay_1l1sec(); // 1 second delay
end;
end.

MikroElektronika 240

mikroPascal PRO for PIC32

CANSPI Library

The SPI module is available with a number of the PIC32 MCUs. The mikroPascal PRO for PIC32 provides a library
(driver) for working with mikroElektronika’s CANSPI Add-on boards (with MCP2515 or MCP2510) via SPI interface.

The CAN is a very robust protocol that has error detection and signalization, self(ichecking and fault confinement.
Faulty CAN data and remote frames are re-transmitted automatically, similar to the Ethernet.

Data transfer rates depend on distance. For example, 1 Mbit/s can be achieved at network lengths below 40m while
250 Kbit/s can be achieved at network lengths below 250m. The greater distance the lower maximum bitrate that can
be achieved. The lowest bitrate defined by the standard is 200Kbit/s. Cables used are shielded twisted pairs.

CAN supports two message formats:

- Standard format, with 11 identifier bits and
- Extended format, with 29 identifier bits

Important :

- Consult the CAN standard about CAN bus termination resistance.

- An effective CANSPI communication speed depends on SPI and certainly is slower than “real” CAN.

- The library uses the SPI module for communication. User must initialize appropriate SPI module before
using the SPI Graphic Lcd Library.

- For MCUs with multiple SPI modules it is possible to initialize both of them and then switch by using the
SPI_Set_Active routine.

- Number of SPI modules per MCU differs from chip to chip. Please, read the appropriate datasheet before
utilizing this library.

Library Dependency Tree
{ canspi ——{sp1)

External dependencies of CANSPI Library

The following variables must be

defined in all projects using CANSPI | Description: Example:

Library:

var CanSpi CS : sbit; sfr; . . var CanSpi CS : sbit at

external; Chip Select line. LATFO bit;

var CanSpi Rst : sbit; sfr; . var CanSpi Rst : shit at
- Reset line. B

external; LATF1 bit;

var CanSpi CS Direction var CanSpi CS Direction

Direction of the Chip Select pin.

sbit; sfr; external; sbit at TRISFO bit;

var CanSpi Rst Direction
sbit; sfr; external;

var CanSpi Rst Direction :

Direction of the Reset pin. sbit at TRISFL bit;

241 MikroElektronika

mikoPascal PRO for PIC32

Library Routines

- CANSPISetOperationMode
- CANSPIGetOperationMode
- CANSPIInit

- CANSPISetBaudRate

- CANSPISetMask

- CANSPISetFilter

- CANSPIRead

- CANSPIWrite

CANSPISetOperationMode

Prototype procedure CANSPISetOperationMode (mode : byte; WAIT: byte);

Description | Sets the CANSPI module to requested mode.

Parameters | - mode: CANSPI module operation mode. Valid values: CANSPI 0P MODE constants. See CANSPT

OP MODE constants.
- wATT: CANSPI mode switching verification request. If wATT == 0, the call is non-blocking. The
function does not verify if the CANSPI module is switched to requested mode or not. Caller must
use CANSPIGetOperationMode to verify correct operation mode before performing mode specific
operation. If wATT = 0, the call is blocking — the function won’t “return” until the requested mode is
set.

Returns Nothing.

Requires The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.

Example // set the CANSPI module into configuration mode (wait inside
CANSPISetOperationMode until this mode is set)
CANSPI1SetOperationMode(_CANSPI_MODE_CONFIG, OxFF);

Notes None.

MikroElektronika 242

mikroPascal

PRO for PIC32

CANSPIGetOperationMode

Prototype

function CANSPIGetOperationMode() : byte;

Description

The function returns current operation mode of the CANSPI module. Check CANSPI_OP_MODE
constants or device datasheet for operation mode codes.

Parameters

None.

Returns

Current operation mode.

Requires

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.

Example

// check whether the CANSPI in Normal mode and if it is do

something.
iT (CANSPIGetOperationMode() = _CANSPI_MODE_NORMAL) then
begin

modulle is

end;

Notes

None.

CANSPIInit

Prototype

procedure CANSPIInit (SJW, BRP, PHSEGl, PHSEG2, PROPSEG, CANSPI CONFIG FLAGS
: char);

Description

Initializes the CANSPI module.
Stand-Alone CAN controller in the CANSPI module is set to:

- Disable CAN capture

- Continue CAN operation in Idle mode

- Do not abort pending transmissions

- Fcan clock : 4*Tcy (Fosc)

- Baud rate is set according to given parameters

- CAN mode : Normal

- Filter and mask registers |IDs are set to zero

- Filter and mask message frame type is set according to CANSPI CONFIG FLAGS value

SAM, SEG2PHTS, WAKFIL and DBEN bits are set according to CANSPI CONFIG FLAGS value.

Parameters

- sJw as defined in MCU'’s datasheet (CAN Module)

- BRP as defined in MCU'’s datasheet (CAN Module)

- PHSEG1 as defined in MCU’s datasheet (CAN Module)

- PHSEG?2 as defined in MCU’s datasheet (CAN Module)

- PROPSEG as defined in MCU’s datasheet (CAN Module)

- CANSPI CONFIG FLAGS is formed from predefined constants. See CANSPI CONFIG FLAGS
constants.

Returns

Nothing.

243

MikroElektronika

mikoPascal PRO for PIC32

Requires

Global variables:

- CanSpi Cs: Chip Select line

- CanSpi Rst:Resetline

- CanSpi Cs Direction: Direction of the Chip Select pin

- CanSpi Rst Direction: Direction of the Reset pin

must be defined before using this function.

The CANSPI routines are supported only by MCUs with the SPI module.

The SPI module needs to be initialized. See the sPTx Init and SPIx Init Advanced routines.

MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.

Example

// CANSP1 module connections

var CanSpi_CS : shit at LATFO_bit;
CanSpi_CS Direction sbit at TRISFO bit;
CanSpi_Rst sbit at LATF1 bit;
CanSpi_Rst Direction : sbit at TRISF1 bit;

// End CANSPI module connections

var CANSPI_Init Flags: word;

CANSPI_Init_Flags := _CANSPI_CONFIG_SAMPLE_THRICE and
_CANSPI_CONFIG_PHSEG2_PRG_ON and
_CANSPI_CONFIG_STD_MSG and
_CANSPI_CONFIG_DBL_BUFFER_ON and
_CANSPI_CONFIG_VALID_XTD_MSG and
_CANSPI_CONFIG_LINE_FILTER_OFF;

SPI1L _InitQ); // initialize
SPI1 module
CANSPIINnit(1,3,3,3,1,CANSPI_Init_Flags); // initialize CANSPI

Notes

- CANSPI mode NORMAL will be set on exit.

MikroElektronika 244

mikroPascal PRO for PIC32

CANSPISetBaudRate

Prototype |procedure CANSPISetBaudRate (SJW, BRP, PHSEGl, PHSEG2, PROPSEG, CANSPI
CONFIG FLAGS : char);
Returns Nothing.
Description | Sets the CANSPI module baud rate. Due to complexity of the CAN protocol, you can not simply force
a bps value. Instead, use this function when the CANSPI module is in Config mode.
SAM, SEG2PHTS and WAKFTIL bits are set according to CANSPI_CONFIG_FLAGS value. Refer to
datasheet for details.
Parameters | - sJuw as defined in MCU’s datasheet (CAN Module)
- BRP as defined in MCU'’s datasheet (CAN Module)
- PHSEG1 as defined in MCU’s datasheet (CAN Module)
- PHSEG2 as defined in MCU’s datasheet (CAN Module)
- PROPSEG as defined in MCU’s datasheet (CAN Module)
- CANSPI CONFIG FLAGS is formed from predefined constants. See CANSPI_CONFIG_FLAGS
constants.
Returns Nothing.
Requires The CANSPI module must be in Config mode, otherwise the function will be ignored. See
CANSPISetOperationMode.
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.
Example // set required baud rate and sampling rules
var CANSPI_CONFIG_FLAGS : byte;
CANSPI1SetOperationMode(_CANSPI_MODE_CONFIG,O0xFF); // set CONFIGURATION
mode (CANSPI module must be in config mode for baud rate settings)
CANSPI_CONFIG_FLAGS := _CANSPI_CONFIG_SAMPLE_THRICE and
__CANSPI_CONFIG_PHSEG2_PRG_ON and
__CANSPI_CONFIG_STD_MSG and
_CANSPI_CONFIG_DBL_BUFFER_ON and
_CANSPI_CONFIG_VALID XTD_MSG and
_CANSPI_CONFIG_LINE_FILTER_OFF;
CANSPISetBaudRate(l, 1, 3, 3, 1, CANSPI_CONFIG_FLAGS);
Notes None.

245

MikroElektronika

mikoPascal PRO for PIC32

CANSPISetMask

Prototype procedure CANSPISetMask (CANSPI MASK : byte; val : longint; CANSPI CONFIG
FLAGS : byte);

Description | Configures mask for advanced filtering of messages. The parameter value is bit-adjusted to the
appropriate mask registers.

Parameters | - cCaNsPT MASK: CAN module mask number. Valid values: CANSPT MASK constants. See CANSPI_
MASK constants.

- val: mask register value. This value is bit-adjusted to appropriate buffer mask registers
- CANSPI CONFIG FLAGS: selects type of message to filter. Valid values:

- CANSPI CONFIG ALL VALID MSG,

- CANSPI CONFIG MATCH MSG TYPE & CANSPI CONFIG STD MSG,

- CANSPI CONFIG MATCH MSG TYPE & CANSPI CONFIG XTD MSG.
See CANSPI_CONFIG_FLAGS constants.

Returns Nothing.

Requires The CANSPI module must be in Config mode, otherwise the function will be ignored. See
CANSPISetOperationMode.

The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.

Example // set the appropriate filter mask and message type value
CANSPISetOperationMode(_CANSPI_MODE_CONFIG,OxFF) ; // set
CONFIGURATION mode (CANSPI1 module must be 1in config mode for mask
settings)
// Set all Bl mask bits to 1 (all filtered bits are relevant):
// Note that -1 is just a cheaper way to write OxXFFFFFFFF.
// Complement will do the trick and fill it up with ones.
CANSPISetMask(_CANSPI_MASK_B1, -1, _CANSPI_CONFIG_MATCH_MSG_TYPE and
CANSPI1_CONFIG_XTD_MSG);

Notes None.

MikroElektronika 246

mikroPascal PRO for PIC32

CANSPISetFilter

Prototype

procedure CANSPISetFilter (CAN FILTER : as byte, val : longint, CANSPI
CONFIG FLAGS : as byte);

Description

Configures message filter. The parameter va 1 ue is bit-adjusted to the appropriate filter registers.

Parameters

- canspI FILTER: CAN module filter number. Valid values: CANSPTI FILTER constants. See
CANSPI_FILTER constants.

- val: filter register value. This value is bit-adjusted to appropriate filter registers

- CANSPI CONFIG FLAGS: selects type of message to filter. Valid values: CANSPI CONFIG STD
MSGand CANSPI CONFIG XTD MSG. See CANSPI_CONFIG_FLAGS constants.

Returns

Nothing.

Requires

The CANSPI module must be in Config mode, otherwise the function will be ignored. See
CANSPISetOperationMode.

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.

Example

// set the appropriate filter value and message type
CANSPISetOperationMode (_CANSPI MODE CONFIG, OxFF) ; // set CONFIGURATION
mode (CANSPI module must be in config mode for filter settings)

// Set id of filter B1 F1 to 3 :
CANSPISetFilter (CANSPI FILTER Bl F1, 3, CANSPI CONFIG_XTD MSG) ;

Notes

None.

247

MikroElektronika

mikoPascal PRO for PIC32

CANSPIRead

Prototype function CANSPIRead(var id : longint; var Data : array[8] of byte; var
DataLen: byte; var CAN RX MSG FLAGS : byte) : byte;

Description | If at least one full Receive Buffer is found, it will be processed in the following way:

- Message ID is retrieved and stored to location provided by the id parameter

- Message data is retrieved and stored to a buffer provided by the data parameter

- Message length is retrieved and stored to location provided by the datalen parameter

- Message flags are retrieved and stored to location provided by the CANSPI RX MSG FLAGS
parameter

Parameters | - id: message identifier address
- data: an array of bytes up to 8 bytes in length
- datalen: data length address
- CANSPI RX MSG FLAGS: message flags address. For message receive flags format refer to
CANSPI RX MSG FLAGS constants. See CANSPI_RX_MSG_FLAGS constants.
Returns - 0 if nothing is received
- 0xFEFF if one of the Receive Buffers is full (message received)
Requires The CANSPlI module must be in a mode in which receiving is possible. See
CANSPISetOperationMode.
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.
Example // check the CANSPI1 module for received messages. If any was received do
something.
var msg_rcvd, rx_flags, data_len : byte;
data : array[8] of byte;
msg_id : longint;
CANSPISetOperationMode(_CANSPI_MODE_NORMAL ,O0xFF); // set NORMAL
mode (CANSPI1 module must be in mode in which receive is possible)
rx_flags := 0; // clear message
flags
if (msg_rcvd = CANSPIRead(msg_id, data, data_len, rx flags)) then
begin
end;
Notes None.

MikroElektronika 248

mikroPascal PRO for PIC32

CANSPIWrite
Prototype function CANSPIWrite(id : longint; var Data : array([8] of byte; Datalen,
CANSPT TX MSG FLAGS : byte) : byte;

Description | If at least one empty Transmit Buffer is found, the function sends message in the queue for
transmission.

Parameters | - i d: CAN message identifier. Valid values: 11 or 29 bit values, depending on message type (standard
or extended)

- Data: data to be sent

- DataLen: data length. Valid values: 0..8

- CANSPI TX MSG FLAGS: message flags. Valid values: CANSPT TX MSG FLAGS constants. See
CANSPI_TX_MSG_FLAGS constants.

Returns - 0 if all Transmit Buffers are busy
- 0xFEFF if at least one Transmit Buffer is available

Requires The CANSPlI module must be in mode in which transmission is possible. See
CANSPISetOperationMode.

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.

Example // send message extended CAN message with the appropriate ID and data
var tx_flags : byte;

data : array[8] of byte;

msg_id : longint;

CANSPISetOperationMode (CANSP1_MODE_NORMAL ,0xFF) ; // set
NORMAL mode (CANSPI must be in mode in which transmission is possible)
tx_flags = _CANSPI_TX PRIORITY_O and _CANSPI_TX_ XTD_FRAME; // set message
flags
CANSPIWrite(msg_id, data, 2, tx_flags);

Notes None.

CANSPI Constants

There is a number of constants predefined in the CANSPI library. You need to be familiar with them in order to be able
to use the library effectively. Check the example at the end of the chapter.

CANSPI_OP_MODE Constants

The cANsPT 0P MODE constants define CANSPI operation mode. Function CANSPISetOperationMode expects one
of these as it's argument:

249 MikroElektronika

mikoPascal PRO for PIC32

Copy Code To Clipboard

const
_CANSPI _MODE BITS : byte =
_CANSPI _MODE NORMAL : byte =
_CANSPI MODE SLEEP : byte =
_CANSPI MODE LOOP : byte =

_CANSPI MODE LISTEN : byte =
_CANSPI _MODE CONFIG : byte =

SEO
0;

$20;
$40;
$60;
$80;

; // Use this to access opmode Dbits

’

’

’

’

CANSPI_CONFIG_FLAGS Constants

The CANSPI CONFIG FLAGS constants define flags related to the CANSPI module configuration. The functions
CANSPIInit, CANSPISetBaudRate, CANSPISetMask and CANSPISetFilter expect one of these (or a bitwise

combination) as their argument:
Copy Code To Clipboard

const
_CANSPI CONFIG DEFAULT

_CANSPI CONFIG PHSEG2 PRG BIT
_CANSPI CONFIG PHSEG2 PRG ON
_CANSPI CONFIG PHSEG2 PRG OFF

_CANSPI CONFIG LINE FILTER BI
_CANSPI CONFIG LINE FILTER ON
_CANSPI CONFIG LINE FILTER OF

_CANSPI CONFIG SAMPLE BIT
_CANSPI CONFIG SAMPLE ONCE
_CANSPI CONFIG SAMPLE THRICE

_CANSPI CONFIG MSG TYPE BIT
_CANSPI CONFIG STD MSG
_CANSPI CONFIG XTD MSG

_CANSPI CONFIG DBL BUFFER BIT
_CANSPI CONFIG DBL BUFFER ON
_CANSPI CONFIG DBL BUFFER OFF

_CANSPI CONFIG MSG BITS
_CANSPI CONFIG ALL MSG

_CANSPI CONFIG VALID XTD MSG
_CANSPI CONFIG VALID STD MSG
_CANSPI CONFIG ALL VALID MSG

T

F

byte

byte
byte
byte

byte
byte
byte

byte
byte
byte

byte
byte
byte

byte
byte
byte

byte
byte
byte
byte
byte

SFF;

$01;
SFF;
SFE;

$02;
SFF;
SFD;

$04;
SFF;
SFB;

$08;
SFF;
SFE7;

$10;
SFF;
SEF;

$60;
SFF;
SDF;
SBF;
SOF;

//

//
//

//
//

//
//

//
//

//
//

//
//
//
//

11111111

XXXXXXX1
XXKXXXXXO

XXXXXX1X
XXKXXKXXO0X

XXXXX1XX
XXXXXOXX

XXXX1XXX
XXKXKXOXXX

XXX1XXXX
XXKXOXXXX

X11XXXXX
X1O0XXXXX
XO1XXXXX
XOOXXXXX

MikroElektronika

250

mikroPascal PRO for PIC32

You may use bitwise AND (&) to form config byte out of these values. For example:
Copy Code To Clipboard
init := CANSPI CONFIG SAMPLE THRICE and

_CANSPI CONFIG PHSEG2 PRG ON and

_CANSPI CONFIG STD MSG and

_CANSPI CONFIG DBL BUFFER ON and

_CANSPI CONFIG VALID XTD MSG and

_CANSPI CONFIG LINE FILTER OFF;

CANSPIInit(1, 1, 3, 3, 1, init); // initialize CANSPI

CANSPI_TX _MSG_FLAGS Constants

CANSPI TX MSG FLAGS are flags related to transmission of a CANSPI message:

Copy Code To Clipboard

const
_CANSPI_TX PRIORITY BITS : byte = $03;
_CANSPI TX PRIORITY 0 : byte = S$FC; // XXXXXX00
_CANSPI TX PRIORITY 1 : byte = S$FD; // XXXXXX01
_CANSPI_TX PRIORITY 2 : byte = S$FE; // XXXXXX10
_CANSPI_TX PRIORITY 3 : byte = S$FF; // XXXXXX11
_CANSPI_TX FRAME BIT : byte = $08;
_CANSPI TX STD FRAME : byte = S$FF; // XXXXX1XX
_CANSPI TX XTD FRAME : byte = S$F7; // XXXXXO0XX
_CANSPI_TX RTR BIT : byte = $40;
_CANSPI TX NO RTR FRAME : byte = $FF; // XIXXXXXX
_CANSPI_TX RTR FRAME : byte = $BF; // XOXXXXXX

You may use bitwise AND (and) to adjust the appropriate flags. For example:

Copy Code To Clipboard

// form value to be used as sending message flag :

send_config := _CANSPI_TX PRIORITY_O and
_CANSPI_TX_XTD_FRAME and
_CANSPI_TX_NO_RTR_FRAME;

CANSPIWrite(id, data, 1, send_config);

CANSPI_RX_MSG_FLAGS Constants

CANSPI RX MSG FLAGS are flags related to reception of CANSPI message. If a particular bit is set then corresponding
meaning is TRUE or else it will be FALSE.

251 MikroElektronika

mikoPascal PRO for PIC32

Copy Code To Clipboard

const

CANSPI RX FILTER BITS : byte = $07; // Use this to access filter bits
_CANSPI_RX FILTER 1 : byte = 500;
_CANSPI RX FILTER 2 : byte = $01;

CANSPI RX FILTER 3 : byte = $02;
_CANSPI_RX FILTER 4 : byte = $03;
_CANSPI RX FILTER 5 : byte = $04;
_CANSPI RX FILTER 6 : byte = $05;
_CANSPI RX OVERFLOW : byte = $08; // Set if Overflowed else cleared
_CANSPI RX INVALID MSG : byte = $10; // Set if invalid else cleared
_CANSPI RX XTD FRAME : byte = $20; // Set if XTD message else cleared
_CANSPI RX RTR FRAME : byte = $40; // Set if RTR message else cleared

_CANSPI_RX DBL_BUFFERED : byte = $80; // Set if this message was hardware double-
buffered

You may use bitwise AND (and) to adjust the appropriate flags. For example:
Copy Code To Clipboard

if (MsgFlag and CANSPI RX OVERFLOW) <> 0 then
begin

// Receiver overflow has occurred.

// We have lost our previous message.
end;

CANSPI_MASK Constants

The caNSPI MASK constants define mask codes. Function CANSPISetMask expects one of these as it's argument:
Copy Code To Clipboard

const

_CANSPI MASK Bl : byte = 0;
_CANSPI MASK B2 : byte

I
i

CANSPI_FILTER Constants

The cANSPI FILTER constants define filter codes. Functions CANSPISetFilter expects one of these as it's
argument:

Copy Code To Clipboard

const
_CANSPI FILTER Bl F1 : byte =
_CANSPI FILTER Bl F2 : byte =
_CANSPI FILTER B2 F1 : byte =
_CANSPI FILTER B2 F2 : byte =
_CANSPI FILTER B2 F3 : byte =
_CANSPI FILTER B2 F4 : byte =

~e N

N~ Ne N

g W NP O
~

~.

MikroElektronika 252

mikroPascal PRO for PIC32

Library Example

The code is a simple demonstration of CANSPI protocol. This node initiates the communication with the 2nd node by
sending some data to its address. The 2nd node responds by sending back the data incremented by 1. This (1st) node
then does the same and sends incremented data back to the 2nd node, etc.

Code for the first CANSPI node:

Copy Code To Clipboard

program Can Spi 1st;

const ID 1st : longint = 12111;
const ID 2nd : longint = 3;

var Can Init Flags, Can_ Send Flags, Can Rcv Flags : word; // can flags
Rx Data Len : word; // received data length in bytes
RxTx Data : array[38] of byte; // can rx/tx data buffer
Msg Rcvd : byte; // reception flag
Tx_ID, Rx_ID : dword; // can rx and tx ID

// CANSPI module connections

var CanSpi CS : sbit at LATFO bit;
CanSpi CS Direction : sbit at TRISFO bit;
CanSpi Rst : sbit at LATF1 bit;

CanSpi Rst Direction : sbit at TRISF1 bit;
// End CANSPI module connections

begin
CHECON := 0x32;
ADIPCFG := OxFFFF; // configure AN pins as digital I/O
PORTB := 0; // clear PORTB
TRISB := 0; // set PORTB as output
Can Init Flags := 0; //
Can_Send Flags := 0; // clear flags
Can _Rcv_Flags := 0; //
Can_Send Flags := CANSPI TX PRIORITY 0 and // form value to be used

_CANSPI TX XTD FRAME and // with CANSPIWrite
_CANSPI TX NO_RTR_FRAME;

Can Init Flags _CANSPI CONFIG_SAMPLE THRICE and // form value to be used
_CANSPI CONFIG PHSEG2 PRG ON and // with CANSPIInit
_CANSPI CONFIG XTD MSG and

_CANSPI CONFIG DBL BUFFER ON and

_CANSPI CONFIG VALID XTD MSG;

// Initialize SPI2 module

SPI2 Init();
CANSPIInitialize(1,3,3,3,1,Can Init Flags); // initialize external CANSPI module
CANSPISetOperationMode(_CANSPI_MODE_CONFIG,OXFF); // set CONFIGURATION mode

CANSPISetMask (CANSPI MASK B1,-1, CANSPI CONFIG XTD MSG); // set all maskl bits to ones

253 MikroElektronika

mikoPascal PRO for PIC32

CANSPISetMask (CANSPI MASK B2,-1, CANSPI CONFIG XTD MSG);

bits to ones

CANSPISetFilter (CANSPI FILTER B2 F4,ID 2nd, CANSPI CONFIG XTD MSG);

filter B2 F4 to 2nd node ID

CANSPISetOperationMode (_ CANSPI MODE NORMAL, OxFF) ;

// Set initial data to be sent
RxTx Data[0] := 9;

CANSPIWrite (ID 1st, RxTx Data,

while (TRUE) do
begin
Msg Rcvd
message
if ((Rx_ID = ID 2nd) and Msg Rcvd) then
begin
PORTB := RxTx Datal[0];

Inc (RxTx Datal[0]);
Delay ms (10);
CANSPIWrite (ID 1st, RxTx Data,
incremented data back
end;
end;
end.

Code for the second CANSPI node:
Copy Code To Clipboard
program Can Spi 2nd;

const ID lst
const ID 2nd

12111;
3;

longint
longint

var Can Init Flags, Can Send Flags, Can Rcv Flags

Rx Data Len word;

RxTx Data array[8] of byte;
Msg Rcvd byte;

Tx ID, Rx ID dword;

// CANSPI module connections

var CanSpi CS
CanSpi CS Direction
CanSpi Rst
CanSpi Rst Direction

// End CANSPI module connections

begin
CHECON := 0x32;
AD1PCFG := OxFFFF;

1, Can_Send Flags);

:= CANSPIRead (Rx ID , RxTx Data , Rx Data Len, Can Rcv Flags);

// set all mask2

// set id of

// set NORMAL mode

// send initial message

// endless loop
// receive

// 1f message received check id

// id correct, output data at PORTD
// increment received data

1, Can_Send Flags); // send

word; // can flags
// received data length in bytes
// can rx/tx data buffer
// reception flag
// can rx and tx ID

sbit at LATFO bit;
sbit at TRISFO bit;
sbit at LATF1 bit;
sbit at TRISF1 bit;

// configure AN pins as digital I/O

MikroElektronika

254

mikroPascal PRO for PIC32

PORTB := 0; // clear PORTB

TRISB := 0; // set PORTB as output

Can Init Flags := 0; //

Can_Send Flags := 0; // clear flags

Can Rcv_Flags := 0; //

Can_Send Flags := CANSPI TX PRIORITY 0 and // form value to be used
_CANSPI_TX XTD FRAME and // with CANSPIWrite

_CANSPI TX NO RTR FRAME;

Can Init Flags _CANSPI CONFIG SAMPLE THRICE and // form value to be used
_CANSPI_CONFIG PHSEG2 PRG_ON and // with CANSPIInit
_CANSPI CONFIG XTD MSG and

_CANSPI_CONFIG DBL BUFFER_ON and

_CANSPI_CONFIG VALID XTD MSG and

_CANSPI CONFIG LINE FILTER OFF;

// Initialize SPI1 module
SPI2 Init();

CANSPIInitialize(1,3,3,3,1,Can_Init Flags); // initialize
external CANSPI module

CANSPISetOperationMode (_ CANSPI MODE CONFIG, OxFF) ; // set CONFIGURATION mode

CANSPISetMask (CANSPI MASK Bl,-1, CANSPI CONFIG XTD MSG); // set all
maskl bits to ones

CANSPISetMask (CANSPI MASK B2,-1, CANSPI CONFIG XTD MSG); // set all
mask?2 bits to ones

CANSPISetFilter (CANSPI FILTER B2 F3,ID lst, CANSPI CONFIG XTD MSG) ; // set id of

filter B2 F3 to 1st node ID

CANSPISetOperationMode (_ CANSPI MODE NORMAL, OxFF) ; // set NORMAL mode
while (TRUE) do // endless loop
begin
Msg Rcvd := CANSPIRead(Rx ID , RxTx Data , Rx Data Len, Can Rcv_Flags); // receive
message
if ((Rx_ID = ID 1st) and Msg Rcvd) then // if message received check id
begin
PORTB := RxTx Datal[0]; // id correct, output data at PORTB
Inc (RxTx Datal[0]); // increment received data
CANSPIWrite (ID 2nd, RxTx Data, 1, Can Send Flags); // send
incremented data back
end;
end;
end.

255 MikroElektronika

mikoPascal PRO for PIC32

HW Connection

ek | -
i

s
:

| 2 8l
8

OSCLLATOR

1] LII.IULILIIJI.IIJLIIIJ-I

oscz2 iNT [|—
IE,s—[osc1 ARG [
® [ves B [FX

=— MCP2510

<
5]
0
[

IJLII.IIJLILIIJLII.IIJI.IE

10R

8
I”—:[GNDMH]:—
————{|rRxD wret]5—

Shielded <~ |
twisted pair N
Example of interfacing CAN transceiver MCP2510 with MCU via SPI interface

MikroElektronika 256

mikroPascal PRO for PIC32

Compact Flash Library

The Compact Flash Library provides routines for accessing data on Compact Flash card (abbr. CF further in text). CF
cards are widely used memory elements, commonly used with digital cameras. Great capacity and excellent access
time of only a few microseconds make them very attractive for microcontroller applications.

In CF card, data is divided into sectors. One sector usually comprises 512 bytes. Routines for file handling, the Cf_Fat
routines, are not performed directly but successively through 512B bulffer.

Important :

- Routines for file handling can be used only with FAT16 file system.

- Library functions create and read files from the root directory only.

- Library functions populate both FAT1 and FAT2 tables when writing to files, but the file data is being read from the
FAT1 table only; i.e. there is no recovery if the FAT1 table gets corrupted.

- If MMC/SD card has Master Boot Record (MBR), the library will work with the first available primary (logical)
partition that has non-zero size. If MMC/SD card has Volume Boot Record (i.e. there is only one logical partition and
no MBRs), the library works with entire card as a single partition. For more information on MBR, physical and logical
drives, primary/secondary partitions and partition tables, please consult other resources, e.g. Wikipedia and similar.

- Before writing operation, make sure not to overwrite boot or FAT sector as it could make your card on PC or digital
camera unreadable. Drive mapping tools, such as Winhex, can be of great assistance.

Library Dependency Tree

—_—
—» Compact Flash
—

—» C_Type

(compact Flash FAT16 }—

257 MikroElektronika

mikoPascal PRO for PIC32

External dependencies of Compact Flash Library

The following variables must
be defined in all projects
using Compact Flash Library:

Description:

Example:

sbit; sfr; external;

Direction of the Address 0 pin.

bit;

var CF Data Port : byte;

— — . var CF Data Port byte at PORTD;
sfr: external: Compact Flash Data Port _Data_ Por yte
var CF RDY shit; sfr; . . _)

T Ready signal line. var CF RDY : sbit at RB7 bit;
external ; — —
var CF WE sbit; sfr; _

- ’ ’ i i ine. var CF WE sbit at LATB6 bit;
external ; Write Enable signal line i _bi
var CF OE sbit; sfr;) . _

- ’ ’ . var CF OE sbit at LATB5 bit;
external : Output Enable signal line CF_ O _bit
var CF CD1 sbit; sfr; _

- 7 i i i var CF CD1 i RB4 bit;
external : Chip Detect signal line. ar Cr_C sbit at _bit
var CF CE1l sbit; sfr; _

— ’ i i ine. var CF CEl sbit at LATB3 bit;
external : Chip Enable signal line - _bi
var CF A2 sbit; sfr;

- ’ ’ i F A2 i LATB2 bit;
external : Address pin 2. var CF_ sbit at _bit
var CF Al sbit; sfr; _

- ’ ’ in1. var CF Al sbit at LATBl bit;
external : Address pin 1 . _bi
var CF A0 shit; sfr;) _ .

i Address pin 0. var CF A0 sbit at LATBO bit;
external; — _
var CF _RDY direction Direction of the Ready pin var CF_RDY direction : sbit at TRISB7
sbit; sfr; external; y pin. bit;
var CF WE direction N . . var CF WE direction sbit at TRISB6

= B Direction of the Write Enable pin. ‘ - - -

shit; sfr; external; bit;
var CF OE direction N . var CF OE direction sbit at TRISB5
sbit: sfr: external: Direction of the Output Enable pin. bit;:
var CF CDl1 direction L) . var CF CD1 direction : sbit at TRISB4
sbit: sfr: external: Direction of the Chip Detect pin. bit:
var CF CEl direction N)) var CF CEl direction : sbit at TRISB3
sbit: sfr: external: Direction of the Chip Enable pin. pit;
var CF A2 direction . . var CF A2 direction sbit at TRISB2
sbit: sfr: external: Direction of the Address 2 pin. bit;
var CF Al direction . . . var CF Al direction sbit at TRISB1
sbit: sfr: external: Direction of the Address 1 pin. bit;
var CF A0 direction var CF_A0 direction : sbit at TRISBO

MikroElektronika

258

mikroPascal PRO for PIC32

Library Routines

- Cf_Init

- Cf_Detect

- Cf_Enable

- Cf_Disable

- Cf_Read_|Init

- Cf_Read_Byte

- Cf_Write_Init

- Cf_Write_Byte

- Cf_Read_Sector
- Cf_Write_Sector

Routines for file handling:

- Cf_Fat_Init

- Cf_Fat_QuickFormat

- Cf_Fat_Assign

- Cf_Fat_Reset

- Cf_Fat Read

- Cf_Fat_Rewrite

- Cf_Fat_Append

- Cf_Fat_Delete

- Cf_Fat_Write

- Cf_Fat_Set File_Date
- Cf_Fat_Get_File_Date
- Cf_Fat_Get_File_Date Modified
- Cf_Fat_Get_File_Size
- Cf_Fat_Get_Swap_File

The following routine is for the internal use by compiler only:

- Cf_Issue_ID_Command

259 MikroElektronika

mikoPascal PRO for PIC32

Cf_Init
Prototype procedure Cf Init();
Description | Initializes ports appropriately for communication with CF card.
Parameters | None.
Returns Nothing.
Requires Global variables:
-CF Data Port :Compact Flash data port
- CE_RDY : Ready signal line
- CF_WE : Write enable signal line
- CF OE : Output enable signal line
- CE cD1 : Chip detect signal line
- CF _CE1 : Enable signal line
- CF A2 :Address pin 2
-CF Al :Address pin 1
- CF_AO : Address pin 0
-CF RDY direction : Direction of the Ready pin
-CF WE direction : Direction of the Write enable pin
-CF OE direction : Direction of the Output enable pin
-CF CD1 direction : Direction of the Chip detect pin
-CF CEl1 direction : Direction of the Chip enable pin
-CF A2 direction : Direction of the Address 2 pin
-CF Al direction : Direction of the Address 1 pin
-CF A0 direction : Direction of the Address 0 pin
must be defined before using this function.
Example // set compact flash pinout
var
Cf Data Port : byte at PORTD;
CF_RDY : sbit at RB7_bit;
CF_WE : sbit at LATB6 bit; // for writing to output pin always use latch
CF_OE : sbit at LATB5 bit; // for writing to output pin always use latch
CF CD1 : sbit at RB4 bit;
CF _CE1 : sbit at LATB3 bit; // for writing to output pin always use latch
CF_A2 : sbit at LATB2_bit; // for writing to output pin always use latch
CF_A1 : shit at LATB1_bit; // for writing to output pin always use latch
CF_AO : sbit at LATBO bit; // for writing to output pin always use latch
CF_RDY direction : sbit at TRISB7 bit;
CF_WE direction : sbit at TRISB6 bit;
CF_OE_direction : sbit at TRISB5 bit;
CF_CD1 direction : sbit at TRISB4 bit;
CF_CE1 direction : sbit at TRISB3 bit;
CF_A2 direction : sbit at TRISB2_bit;
CF_Al direction : sbit at TRISB1 bit;
CF_AO direction : sbit at TRISBO bit;
// end of compact flash pinout
Cf_nitQ; /7 initialize CF
Notes None.

MikroElektronika

260

mikroPascal PRO for PIC32

Cf_Detect

Prototype function CF Detect() : word ;

Description | Checks for presence of CF card by reading the chip detect pin.

Parameters | None.

Returns - 1 - if CF card was detected
- 0 - otherwise

Requires The corresponding MCU ports must be appropriately initialized for CF card. See C£ Init.

Example // Wait until CF card is inserted:
while (Cf_Detect() = 0) do

nop;

Notes PIC32 family MCU and CF card voltage levels are different. The user must ensure that MCU’s pin

connected to CD line can read CF card Logical One correctly.
Cf_Enable

Prototype |procedure Cf Enable();

Description | Enables the device. Routine needs to be called only if you have disabled the device by means of the
Cf_Disable routine. These two routines in conjunction allow you to free/occupy data line when working
with multiple devices.

Parameters | None.

Returns Nothing.

Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.

Example // enable compact flash
Cf Enable();

Notes None.

Cf_Disable

Prototype |procedure Cf Disable();

Description | Routine disables the device and frees the data lines for other devices. To enable the device again, call
Cf_Enable. These two routines in conjunction allow you to free/occupy data line when working with
multiple devices.

Parameters | None.

Returns Nothing.

Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.

Example // disable compact flash
Cf Disable();

Notes None.

261

MikroElektronika

mikoPascal PRO for PIC32

Cf _Read_Init
Prototype procedure CfiReadilnit (address : dword; sectcnt : byte);
Description | Initializes CF card for reading.
Parameters | - address: the first sector to be prepared for reading operation.
- sector count: number of sectors to be prepared for reading operation.
Returns Nothing.
Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.
Example // initialize compact flash for reading from sector 590
Cf Read Init (590, 1);
Notes None.

Cf Read Byte

Prototype | function CF Read Byte() : byte;
Description | Reads one byte from Compact Flash sector buffer location currently pointed to by internal read
pointers. These pointers will be autoicremented upon reading.
Parameters | None.
Returns Returns a byte read from Compact Flash sector buffer.
Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.
CF card must be initialized for reading operation. See Cf_Read_lInit.
Example // Read a byte from compact flash:
var data_ as byte;
(;Iéia_ := Cf_Read_Byte();
Notes Higher byte of the unsigned return value is cleared.
Cf_Write_Init
Prototype procedure Cf Write Init (address dword; sectcnt : word);
Description | Initializes CF card for writing.
Parameters | - address: the first sector to be prepared for writing operation.
- sectent: number of sectors to be prepared for writing operation.
Returns Nothing.
Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.
Example // initialize compact flash for writing to sector 590
Cf Write Init (590, 1);
Notes None.

MikroElektronika

262

mikroPascal PRO for PIC32

Cf_Write_Byte

Prototype |procedure Cf Write Byte(data : byte) ;

Description | Writes a byte to Compact Flash sector buffer location currently pointed to by writing pointers. These
pointers will be autoicremented upon reading. When sector buffer is full, its contents will be transfered
to appropriate flash memory sector.

Parameters | - data : byte to be written.

Returns Nothing.

Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.

CF card must be initialized for writing operation. See Cf_Write_Init.

Example var data : byte;
data := OxAA;

Cf Write Byte(data);

Notes None.

Cf Read_Sector

Prototype procedure Cf Read Sector (sector number dword; var buffer array[512] of
byte);
Description | Reads one sector (512 bytes). Read data is stored into buffer provided by the buf fer parameter.
Parameters | - sector number: sector to be read.
- buf fer: data buffer of at least 512 bytes in length.
Returns Nothing.
Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.
Example // read sector 22
var data_ : array[512] of byte;
é]{Read_Sector(ZZ , data);
Notes None.

Cf_Write_Sector

Prototype procedure Cf Write Sector (sector number : dword; var buffer : array([512] of
byte) ;
Description | Writes 512 bytes of data provided by the buffer parameter to one CF sector.
Parameters | - sector number: sector to be written to.
- buf fer: data buffer of 512 bytes in length.
Returns Nothing.
Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.
Example // write to sector 22
var data_ : array[512] of byte;
é%;Wr ite_Sector(22, data);
Notes None.

263

MikroElektronika

mikoPascal PRO for PIC32

Cf_Fat_|Init
Prototype function Cf Fat Init(): word;
Description | Initializes CF card, reads CF FAT16 boot sector and extracts necessary data needed by the library.
Parameters | None.
Returns - 0 - if CF card was detected and successfully initialized
- 1 - if FAT16 boot sector was not found
- 255 - if card was not detected
Requires Nothing.
Example // init the FAT library
if (Cf_Fat_Init() = 0) then
begin
end
Notes None.

Cf_Fat_QuickFormat

Prototype function Cf Fat QuickFormat (var cf fat label : string[ll]) : word;
Description | Formats to FAT16 and initializes CF card.
Parameters | - c£ fat label:volume label (11 characters in length). If less than 11 characters are provided, the
label will be padded with spaces. If null string is passed, the volume will not be labeled.
Returns - 0 - if CF card was detected, successfully formated and initialized
- 1 - if FAT16 format was unsuccessful
- 255 - if card was not detected
Requires Nothing.
Example // format and initialize the FAT library
if (Cf_Fat _QuickFormat(“mikroE”) = 0) then
begin
end;
Notes - This routine can be used instead or in conjunction with Cf_Fat_|Init routine.
- If CF card already contains a valid boot sector, it will remain unchanged (except volume label field)
and only FAT and ROQOT tables will be erased. Also, the new volume label will be set.

MikroElektronika

264

mikroPascal PRO for PIC32

Cf_Fat_Assign

Prototype function Cf Fat Assign(var filename: array[12] of char; file cre attr: byte):
word;

Description | Assigns file for file operations (read, write, delete...). All subsequent file operations will be applied over
the assigned file.

Parameters | - filename: name of the file that should be assigned for file operations. The file name should be in
DOS 8.3 (file_name.extension) format. The file name and extension will be automatically padded with
spaces by the library if they have less than length required (i.e. “mikro.tx” -> “mikro .tx “), so the user
does not have to take care of that. The file name and extension are case insensitive. The library will
convert them to proper case automatically, so the user does not have to take care of that.

Also, in order to keep backward compatibility with the first version of this library, file names can be
entered as UPPERCASE string of 11 bytes in length with no dot character between the file name and
extension (i.e. “MIKROELETXT” -> MIKROELE.TXT). In this case the last 3 characters of the string
are considered to be file extension.
- file cre attr: file creation and attributes flags. Each bit corresponds to the appropriate file
attribute:

Bit | Mask Description

0 0x01 Read Only

1 0x02 Hidden

2 0x04 System

3 0x08 Volume Label

4 0x10 Subdirectory

5 0x20 Archive

6 0x40 Device (internal use only, never found on disk)

7 0x80 File creation flag. If the file does not exist and this flag is

set, a new file with specified name will be created.
Returns - 0 if file does not exist and no new file is created.

- 1 if file already exists or file does not exist but a new file is created.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.

Example // create file with archive attributes if it does not already exist
Cf Fat Assign (“MIKRO007.TXT”,0xA0) ;

Notes Long File Names (LFN) are not supported.

265

MikroElektronika

mikoPascal PRO for PIC32

Cf_Fat_Reset

Prototype procedure Cf Fat Reset(var size: dword);

Description | Opens currently assigned file for reading.

Parameters | - size: buffer to store file size to. After file has been open for reading its size is returned through this
parameter.

Returns Nothing.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.

Example var size dword;
Cf Fat Reset(size);

Notes None.

Cf Fat Read

Prototype |procedure Cf Fat Read(var bdata: byte);

Description | Reads a byte from currently assigned file opened for reading. Upon function execution file pointers will
be set to the next character in the file.

Parameters | - bdata: buffer to store read byte to. Upon this function execution read byte is returned through this
parameter.

Returns Nothing.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_|Init.
File must be previously assigned. See Cf_Fat_Assign.
File must be open for reading. See Cf_Fat_Reset.

Example var bdata : byte;
éf;FatiRead(bdata) ;

Notes None.

MikroElektronika

266

mikroPascal PRO for PIC32

Cf_Fat_Rewrite

Prototype |procedure Cf Fat Rewrite();
Description | Opens currently assigned file for writing. If the file is not empty its content will be erased.
Parameters | None.
Returns Nothing.
Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
The file must be previously assigned. See Cf_Fat_Assign.
Example // open file for writing
Cf Fat Rewrite();
Notes None.

Cf_Fat_Append

Prototype procedure Cf Fat Append();
Description | Opens currently assigned file for appending. Upon this function execution file pointers will be positioned
after the last byte in the file, so any subsequent file writing operation will start from there.
Parameters | None.
Returns Nothing.
Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.
Example // open file for appending
Cf Fat Append();
Notes None.

Cf_Fat_Delete

Prototype |procedure Cf Fat Delete();

Description | Deletes currently assigned file from CF card.

Parameters | None.

Returns Nothing.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.

Example // delete current file
Cf Fat Delete();

Notes None.

267

MikroElektronika

mikoPascal PRO for PIC32

Cf_Fat_Write
Prototype procedure Cf Fat Write(var fdata: array[512] of byte; data len: word);
Description | Writes requested number of bytes to currently assigned file opened for writing.
Parameters | - £data: data to be written.
- data len: number of bytes to be written.
Returns Nothing.
Requires CF card and CF library must be initialized for file operations. See Cf_Fat_|Init.
File must be previously assigned. See Cf_Fat_Assign.
File must be open for writing. See Cf_Fat_Rewrite or Cf_Fat_Append.
Example var file contents : array[42] of byte;
é%;Fat7Write(ﬁleicontents, 42); // write data to the assigned file
Notes None.

Cf_Fat_Set File_Date

Prototype

procedure Cf Fat Set File Date(year: word; month: byte;
byte; mins: byte; byte) ;

day: byte; hours:

seconds:

Description

Sets the date/time stamp. Any subsequent file writing operation will write this stamp to currently
assigned file’s time/date attributes.

Parameters

- year: year attribute. Valid values: 1980-2107

- month: month attribute. Valid values: 1-12

- day: day attribute. Valid values: 1-31

- hours: hours attribute. Valid values: 0-23

- mins: minutes attribute. Valid values: 0-59

- seconds: seconds attribute. Valid values: 0-59

Returns

Nothing.

Requires

CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.

File must be open for writing. See Cf_Fat_Rewrite or Cf_Fat_Append.

Example

Cf Fat Set File Date(2005,9,30,17,41,0);

Notes

None.

MikroElektronika

268

mikroPascal PRO for PIC32

Cf _Fat_Get_File_Date

Prounype procedure CffFatiGetiFiTeiDate(var year: word; var month: byte; var day:
byte; var hours: byte; var mins: byte);

Description | Reads time/date attributes of currently assigned file.

Parameters | - year: buffer to store year attribute to. Upon function execution year attribute is returned through this
parameter.
- month: buffer to store month attribute to. Upon function execution month attribute is returned through
this parameter.
- davy: buffer to store day attribute to. Upon function execution day attribute is returned through this
parameter.
- hours: buffer to store hours attribute to. Upon function execution hours attribute is returned through
this parameter.
- mins: buffer to store minutes attribute to. Upon function execution minutes attribute is returned
through this parameter.

Returns Nothing.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.

Example var year : word;

month, day, hours, mins : byte;

Cf Fat Get File Date(year, month, day, hours, mins);

Notes None.

Cf _Fat_Get_File _Date Modified

Prototype procedure Cf Fat Get File Date Modified(var year: word; var month: byte; var
day: byte; var hours: byte; var mins: byte);

Description | Retrieves the last modification date/time of the currently assigned file.

Parameters | - year: buffer to store year of modification attribute to. Upon function execution year of modification
attribute is returned through this parameter.
-mon th: buffer to store month of modification attribute to. Upon function execution month of modification
attribute is returned through this parameter.
- day: buffer to store day of modification attribute to. Upon function execution day of modification
attribute is returned through this parameter.
- hours: buffer to store hours of modification attribute to. Upon function execution hours of modification
attribute is returned through this parameter.
- mins: buffer to store minutes of modification attribute to. Upon function execution minutes of
modification attribute is returned through this parameter.

Returns Nothing.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.

Example var year : word;

month, day, hours, mins : byte;

Cf Fat Get File Date Modified(year, month, day, hours, mins);

Notes None.

269

MikroElektronika

mikoPascal PRO for PIC32

Cf_Fat_Get_File_Size

Prototype | function Cf Fat Get File Size(): dword;

Description | This function reads size of currently assigned file in bytes.

Parameters | None.

Returns Size of the currently assigned file in bytes.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.

Example var my file size : dword;
my file size := Cf Fat Get File Size();

Notes None.

Cf Fat_Get Swap File

Prototype

function Cf Fat Get Swap File(sectors cnt: dword; var filename : sString[l1l];
file attr : byte): dword;

Description

This function is used to create a swap file of predefined name and size on the CF media. If a file
with specified name already exists on the media, search for consecutive sectors will ignore sectors
occupied by this file. Therefore, it is recommended to erase such file if it exists before calling this
function. If it is not erased and there is still enough space for a new swap file, this function will delete
it after allocating new memory space for a new swap file.

The purpose of the swap file is to make reading and writing to CF media as fast as possible, by using
the Cf_Read_Sector() and Cf_Write_Sector() functions directly, without potentially damaging the FAT
system. Swap file can be considered as a “window” on the media where the user can freely write/read
data. It's main purpose in the this library is to be used for fast data acquisition; when the time-critical
acquisition has finished, the data can be re-written into a “normal” file, and formatted in the most
suitable way.

Parameters

- sectors cnt: number of consecutive sectors that user wants the swap file to have.

- filename: name of the file that should be assigned for file operations. The file name should be in
DOS 8.3 (file_name.extension) format. The file name and extension will be automatically padded with
spaces by the library if they have less than length required (i.e. “mikro.tx” -> “mikro .tx “), so the user
does not have to take care of that. The file name and extension are case insensitive. The library will
convert them to proper case automatically, so the user does not have to take care of that.

Also, in order to keep backward compatibility with the first version of this library, file names can be
entered as UPPERCASE string of 11 bytes in length with no dot character between the file name and
extension (i.e. “MIKROELETXT” -> MIKROELE.TXT). In this case the last 3 characters of the string
are considered to be file extension.

- file attr:file creation and attributes flags. Each bit corresponds to the appropriate file attribute:

MikroElektronika 270

mikroPascal PRO for PIC32

Parameters - —
Bit | Mask Description
0 0x01 Read Only
1 0x02 Hidden
2 0x04 System
3 0x08 Volume Label
4 0x10 Subdirectory
5 0x20 Archive
6 0x40 Device (internal use only, never found on disk)
7 0x80 Not used
Returns - Number of the start sector for the newly created swap file, if there was enough free space on CF
card to create file of required size.
- 0 - otherwise.
Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
Example // Try to create a swap file with archive atribute, whose size will be at
least 1000 sectors.
// IT it succeeds, it sends the No. of start sector over
UART
var size : dword;
éiée = Cf_Fat_Get_Swap_File(1000, “mikroE.txt”, 0x20);
if (size <> 0) then
begin
UART1_Write(OxAA);
UART1 Write(Lo(size));
UART1 Write(Hi(size));
UART1 _Write(Higher(size));
UART1 Write(Highest(size));
UART1_Write(OxAA);
end;
Notes Long File Names (LFN) are not supported.

271

MikroElektronika

mikoPascal PRO for PIC32

Library Example

This project consists of several blocks that demonstrate various aspects of usage of the Cf_Fat16 library. These are :

- Creation of new file and writing down to it;

- Opening existing file and re-writing it (writing from start-of-file);

- Opening existing file and appending data to it (writing from end-of-file);
- Opening a file and reading data from it (sending it to USART terminal);
- Creating and modifying several files at once;

- Reading file contents;
- Deleting file(s);

- Creating the swap file (see Help for details);

Copy Code To Clipboard
program CF_Fatl6_Test;

// set compact flash pinout
var

Cf_Data_Port : byte at PORTE;

CF_RDY : sbit at RD7_bit;

CF_WE : sbit at LATD6_bit;
CF_OE : sbit at LATD5 bit;
CF_CD1 : sbit at RD4_bit;

CF_CE1 : sbit at LATD3 bit;
CF_A2 : sbit at LATD2 bit;
CF_A1 : sbit at LATD1_bit;
CF_AO : sbit at LATDO_bit;

CF_RDY_direction
CF_WE_direction
CF_OE_direction
CF_CD1_direction
CF_CE1_direction
CF_A2 direction
CF_Al_direction
CF_AO_direction
// end of compact flash pinout

const LINE_LEN = 39;
var
err_txt : string[20];
file_contents :
filename : string[14];

character : byte;

loop, loop2 : byte;
i, size : longint;
Buffer : array[512] of byte;

// UART write text and new line

: sbit at TRISD7_bit;
: sbit at TRISD6_bit;
: sbit at TRISD5 bit;
: sbit at TRISD4_bit;
: sbit at TRISD3_bit;
: sbit at TRISD2 bit;
: sbit at TRISD1_bit;
: sbit at TRISDO_bit;

string[LINE_LEN];

// File names

(carriage return + line feed)

procedure UART1 Write_Line(var uart_text : string);

MikroElektronika

212

mikroPascal PRO for PIC32

begin
UART1 Write Text (uart text);
UART1 Write(13);
UART1 Write (10);

end;
[—mmm—m——————— Creates new file and writes some data to it
procedure M Create New File();
begin
filename[7] := ‘A’;
Cf _Fat_Set File Date(2005,6,21,10,35,0); // Set file date & time info
Cf Fat Assign (filename, 0xA0Q); // Will not find file and then create file
Cf Fat Rewrite(); // To clear file and start with new data
for loop:=1 to 99 do // We want 5 files on the MMC card
begin
UART1 Write(‘.’);
file contents[0] := loop div 10 + 48;
file contents[1] := loop mod 10 + 48;
Cf Fat Write (file contents, LINE LEN-1); // write data to the assigned file
end;
end;
[) Creates many new files and writes data to them
procedure M Create Multiple Files();
begin
for loop2 := ‘B’ to ‘'z’ do
begin
UART1 Write (loop2); // this line can slow down the performance
filename[7] := loop2; // set filename
Cf Fat Set File Date(2005,6,21,10,35,0); // Set file date & time info
Cf Fat Assign(filename, O0xA0); // find existing file or create a new one
Cf Fat Rewrite(); // To clear file and start with new data
for loop := 1 to 44 do
begin
file contents[0] := loop div 10 + 48;
file contents[1] := loop mod 10 + 48;
Cf Fat Write (file contents, LINE LEN-1); // write data to the assigned file
end;
end;
end;
[) = ———— Opens an existing file and rewrites it
procedure M Open File Rewrite();
begin
filename[7] := ‘C’;

// Set filename for single-file tests
Cf Fat Assign(filename, 0);

Cf Fat Rewrite();

for loop := 1 to 55 do
begin
file contents[0] := byte(loop div 10 + 48);
file contents[1] := byte(loop mod 10 + 48);
Cf Fat Write (file contents, LINE LEN-1); // write data to the assigned file
end;
end;

273 MikroElektronika

mikoPascal PRO for PIC32

[/ ——— Opens an existing file and appends data to it
// (and alters the date/time stamp)
procedure M_Open_File_Append();

begin

filename[7] = “B”;

Cf_Fat_Assign(filename, 0);

Cf_Fat_Set_File_Date(2009, 1, 23, 17, 22, 0);

Cf_Fat_Append;

file_contents := “ for mikroElektronika 2009”; // Prepare file for append

file_contents[26] := 13; // CR
file_contents[27] := 10; // LF
Cf_Fat_Write(file_contents, 27); // Write data to assigned file
end;
[/ Opens an existing file, reads data from it and puts it to USART
procedure M_Open_File_Read();
begin

filename[7] := “B7;
Cf_Fat_Assign(filename, 0);
Cf_Fat_Reset(size); // To read file, procedure returns size of file
while size > 0 do
begin
Cf_Fat_Read(character);
UART1_Write(character); // Write data to USART
Dec(size);
end;

[/ Deletes a file. IT file doesn’t exist, it will first be created
// and then deleted.
procedure M_Delete File();
begin
filename[7] := “F7;
Cf_Fat_Assign(filename, 0);
Cf_Fat_Delete();

end;

[/ Tests whether file exists, and 1If so sends its creation date
// and file size via USART

procedure M_Test File_Exist();

var

fsize : longint;

year : word;

month, day, hour, minute : byte;
outstr : array[12] of char;

begin
filename[7] := “B”; // uncomment this line to search for file that DOES exists
// filename[7] := “F~7; // uncomment this line to search for file that DOES NOT exist
if Cf_Fat_Assign(filename, 0) <> 0 then
begin

//--- file has been found - get its date
Cf_Fat_Get_File_Date(year,month,day,hour,minute);
UART1_Write_Text(“ created: °);

WordToStr(year, outstr);

UART1 Write_Text(outstr);

ByteToStr(month, outstr);

MikroElektronika 274

mikroPascal PRO for PIC32

UART1 Write Text (outstr);
WordToStr (day, outstr);
UART1 Write Text (outstr);
WordToStr (hour, outstr);
UART1 Write Text (outstr);
WordToStr (minute, outstr);
UART1 Write Text (outstr);

//--- file has been found - get its modified date
Cf Fat Get File Date Modified(year, month, day, hour, minute);

UART1 Write Text (' modified:
WordToStr (year, outstr);
UART1 Write Text (outstr);
ByteToStr (month, outstr);
UART1 Write Text (outstr);
WordToStr (day, outstr);
UART1 Write Text (outstr);
WordToStr (hour, outstr);
UART1 Write Text (outstr);
WordToStr (minute, outstr);
UART1 Write Text (outstr);

Y)

//--- get file size

fsize := Cf Fat Get File Size;
LongIntToStr (fsize, outstr);
UART1 Write Line (outstr);

end
else begin
//--- file was not found - signal it

UART1 Write (0x55);
Delay ms (1000);
UART1 Write (0x55);
end;
end;

Tries to create a swap file,

sectors

procedure M Create Swap File();
var i word;

begin
for i:=0 to 511 do
Buffer[i] := i;

size := Cf Fat Get Swap File (5000,
function for details
if (size <> 0) then
begin
LongIntToStr (size, err txt);
UART1 Write Line(err txt);
for i:=0 to 4999 do
begin
Cf Write Sector(size, Buffer);

‘mikroE.txt’,

whose size will be at least 100

(see Help for details)

0x20) ; // see help on this

275

MikroElektronika

mikoPascal PRO for PIC32

Inc (size);
UART1 Write(‘.’);
end;
end;
end;

/) ———————————— Main. Uncomment the function(s) to test the desired operation(s)
begin
err_txt := ‘FAT16 not found’;
file contents := ‘XX CF FAT16 library by Anton Rieckert’;
file contents[LINE LEN-2] := 13;
file_contents[LINE LEN-1] := 10;
file contents[LINE LEN] := 0;
filename := ‘MIKROOOxTXT';

{Sdefine COMPLETE EXAMPLE} // comment this line to make simpler/smaller example
CHECON := 0x32;
AD1PCFG := OxFFFF; // disable A/D inputs

// Initialize UART1 module
UART1 Init(56000);
Delay ms (10);

UART1 Write Line(‘MCU-Started’); // MCU present report

// —--- Init the FAT library
// --- use Cf Fat QuickFormat instead of init routine if a format is needed
if Cf Fat Init() = 0 then
begin
Delay ms (2000); // wait for a while until the card is stabilized
// period depends on used CF card
//--- Test start
UART1 Write Line(‘Test Start.’);
M Create New File();
{$SIFDEF COMPLETE EXAMPLE}
M Create Multiple Files();
M Open File Rewrite();
M Open File Append();
M Open_ File Read();
M Delete File();
M Test File Exist();
M Create Swap File();
{SENDIF}
UART1 Write Line(‘Test End.’);
end
else
begin
UART1 Write Line(err txt); // Note: Cf Fat Init tries to initialize a card
more than once.
// If card is not present, initialization may
last longer (depending on clock speed)
end;
end.

MikroElektronika 276

mikroPascal PRO for PIC32

HW Connection

oscLLATOR

:

N

=
[}
0
1A}

goooooooooo

Compact Flash
Card

Pin diagram of CF memory card

277 MikroElektronika

mikoPascal PRO for PIC32

Epson S1D13700 Graphic Lcd Library

The mikroPascal PRO for PIC32 provides a library for working with Glcds based on Epson S1D13700 controller.

The S1D13700 Glcd is capable of displaying both text and graphics on an LCD panel. The S1D13700 Glcd allows
layered text and graphics, scrolling of the display in any direction, and partitioning of the display into multiple screens.
It includes 32K bytes of embedded SRAM display memory which is used to store text, character codes, and bit-mapped

graphics.

The S1D13700 Glcd handles display controller functions including :

- Transferring data from the controlling microprocessor to the buffer memory
- Reading memory data, converting data to display pixels
- Generating timing signals for the LCD panel

The S1D13700 Glcd is designed with an internal character generator which supports 160, 5x7 pixel characters in
internal mask ROM (CGROM) and 64, 8x8 pixel characters incharacter generator RAM (CGRAM).
When the CGROM is not used, up to 256, 8x16 pixel characters are supported in CGRAM.

External dependencies of the Epson S1D13700 Graphic Lcd Library

The following variables must be defined

in all projects using S1D13700 Graphic | Description: Example:

Lcd library:

var S1D13700 DATA byte; sfr;

excternal- e System data bus. var S1D13700 DATA at PORTD;

var S1D13700 WR sbit; sfr; Write sianal var S1D13700 WR sbit at LATC2
external; te signal. bit;

var S1D13700 RD sbit; sfr; Read sianal var S1D13700 RD sbit at LATC1_
external; gnal. bit;

var S1D13700 A0 sbit; sfr; Svstem Address bin var S1D13700 A0 sbit at LATCO
external; y pin. bit;

var S1D13700 RES sbit; sfr; Reset signal var S1D13700 RES sbit at LATC3
external; gnal. bit;

var S1D13700 CS sbit; sfr; Chip select var S1D13700 CS sbit at LATC4
external; P ’ bit;

var S1D13700 DATA Direction Direction of the system data bus | var S1D13700 DATA Direction sbit at
byte; sfr; external; pins. PORTD;

var S1D13700 WR Direction Direction of the Write pin var S1D13700 WR Direction shit at
sbit; sfr; external; pin. TRISC2 bit;

var S1D13700_RD_Direction Direction of the Read pin var S1D13700_RD_Direction sbit at
sbit; sfr; external; pin. TRISCL bit;

var S1D13700 A0 Direction Direction of the System Address | var s1D13700 A0 Direction sbit at
sbit; sfr; external; pin. TRISCO bit;

var S1D13700 RES Direction Direction of the Reset pin var S1D13700 RES Direction : sbit at
sbit; sfr; external; pin. TRISC3 bit;

var S1D13700 CS Direction Direction of the Chip select pin var S1D13700 CS Direction shit at
sbit; sfr; external; P pin. TRISC4 bit;

MikroElektronika

218

mikroPascal PRO for PIC32

Library Routines

- S1D13700_lInit

- S1D13700_Write_ Command
- S1D13700_Write_Parameter
- S1D13700_Read_Parameter
- S1D13700_Fill

- S1D13700_GrFill

- S1D13700_TxtFill

- S1D13700_Display_GrLayer
- S1D13700_Display_TxtLayer
- S1D13700_Set Cursor

- S1D13700_Display_Cursor

- S1D13700_Write_Char

- S1D13700_Write_Text

- S1D13700_Dot

- S1D13700_Line
-S1D13700_H_Line
-S1D13700_V_Line

- S1D13700_Rectangle

- S1D13700_Box

- S1D13700_Rectangle_Round_Edges
- S1D13700_Rectangle_Round_Edges_Fill
- S1D13700_Circle

- S1D13700_Circle_Fill

- S1D13700_Image

- S1D13700_Partiallmage

279 MikroElektronika

mikoPascal PRO for PIC32

S1D13700_lInit

Prototype

procedure S1D13700 Init(width : word; height : word);

Returns

Nothing.

Description

Initializes S1D13700 Graphic Lcd controller.

Parameters:

- width: width of the Glcd panel.
- height: height of the Glcd panel.

Requires

Global variables:

-51D13700 Data Port:Data Bus Port.

- 51D13700 wr: Write signal pin.

- 51D13700 RD: Read signal pin.

- 51D13700 A0: Command/Data signal pin.
- S1D13700 RES: Reset signal pin.

- 51D13700 cs: Chip Select signal pin.

-51D13700 Data Port Direction: Data Bus Port Direction.

-51D13700 WR Direction: Direction of Write signal pin.
-S1D13700 RD Direction: Direction of Read signal pin.

-51D13700 A0 Direction: Direction of Command/Data signal pin.

-51D13700 RES Direction: Direction of Reset signal pin.

-S1D13700 Cs Direction: Direction of Chip Select signal pin.

must be defined before using this function.

Example

// S1D13700 module connections

var S1D13700 Data_Port : byte at PORTD;

var S1D13700 WR : sbit at LATC2 bit;

var S1D13700 RD : sbit at LATCl bit;

var S1D13700_AO : sbit at LATCO_bit;

var S1D13700 RES : sbit at LATC3 bit;

var S1D13700 CS : sbit at LATC4 bit;

var S1D13700 Data_ Port_Direction : byte at PORTD;
var S1D13700 WR Direction : sbit at TRISC2 bit;
var S1D13700_RD_Direction : sbit at TRISC1_bit;
var S1D13700 AO Direction : sbit at TRISCO bit;
var S1D13700 RES Direction : sbit at TRISC3 bit;

var

S1D13700_CS _Direction : sbit at TRISC4 bit;

// End of S1D13700 modulle connections

}}-init display for 320 pixel width, 240 pixel height

S1D13700_Init(320, 240);

MikroElektronika

280

mikroPascal PRO for PIC32

S1D13700_Write_ Command

Prototype procedure s1D1370 0 Write Command (command : byte);
Returns Nothing.
Description | Writes a command to S1D13700 controller.
Parameters:
- command: command to be issued:
Value Description
S1D13700 SYSTEM SET General system settings.
S1D13700 POWER SAVE Enter into power saving mode.
S1D13700 DISP ON Turn the display on.
S1D13700 DISP OFF Turn the display off.
S1D13700 SCROLL Setup text and graphics address regions.
S1D13700 CS RIGHT Cursor moves right after write to display
- = memory.
51D13700 CS LEFT Cursor moves left after write to display
- = memory.
S1D13700 CS UP Cursor moves up after write to display
- = memory.
S1D13700 CS DOWN Cursor moves down after write to display
- = memory.
S1D13700 OVLAY Configure how layers overlay.
S1D13700_CGRAM_ ADR Configure character generator RAM address.
S1D13700 HDOT SCR Set horizontal scroll rate.
S1D13700 CSRW Set the cursor address.
S1D13700 CSRR Read the cursor address.
S1D13700 GRAYSCALE Selects the gray scale depth, in bits-per-pixel
- (bpp).
S1D13700 MEMWRITE Write to display memory.
S1D13700 MEMREAD Read from display memory.
Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example // Turn the display on
S1D13700 Write Command (S1D13700 DISP ON) ;

281

MikroElektronika

mikoPascal PRO for PIC32

S1D13700_Write Parameter

Prototype procedure S1D13700 Write Parameter (parameter : byte);
Returns Nothing.
Description | Writes a parameter to S1D13700 controller.
Parameters:
- parameter: parameter to be written.
Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Previously, a command must be sent through S1D13700_Write_Command routine.
Example S1D13700 Write Command (S1D13700 CSRW); // set cursor address

SlD137007WriteiParameter(Lo(start));
S1D13700 Write Parameter (Hi(start));

// send lower byte of cursor address
// send higher byte cursor address

S1D13700_Read_ Parameter

Prototype function S1D13700 Read Parameter() : byte;
Returns Nothing.
Description | Reads a parameter from GLCD port.
Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example parameter = S1D13700 Read Parameter();
S1D13700_Fill
Prototype procedure S1D13700 Fill(d : byte; start : word; len : word);
Returns Nothing.
Description | Fills Glcd memory block with given byte.
Parameters:
- d: byte to be written.
- start: starting address of the memory block.
- len: length of the memory block in bytes.
Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example // from the starting address of 0x3000, fill the memory block size of Ox7FFF
with 0x20
S1D13700 Fill(0x20, 0x3000, Ox7FFF);

MikroElektronika

282

mikroPascal PRO for PIC32

S1D13700_GrkFill

Prototype procedure S1D13700 GrFill(d : byte);
Returns Nothing.
Description | Fill graphic layer with appropriate value (0 to clear).
Parameters:
- d: value to fill graphic layer with.
Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example // clear current graphic panel

S1D13700 GrFill(0);

S1D13700_TxtFill

Prototype procedure S1D13700 TxtFill(d : byte);
Returns Nothing.
Description | Fill current text panel with appropriate value (0 to clear).
Parameters:
- d: this value will be used to fill text panel.
Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example // clear current text panel
S1D13700 TxtFill (O);

S1D13700_Display_GrLayer

Prototype procedure S1D13700 Display GrLayer (mode : byte);
Returns Nothing.
Description | Display selected graphic layer.
Parameters:
- mode: graphic layer mode. Valid values:
Value Description
S1D13700 LAYER OFF Turn off graphic layer.
S1D13700 LAYER ON Turn on graphic layer.
S1D13700 LAYER FLASH 2Hz Turn on graphic layer and flash it at the rate of 2 Hz.
S1D13700_LAYER _FLASH_ 16Hz Turn on graphic layer and flash it at the rate of 16 Hz.
Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example // Turn on graphic layer
S1D13700 Display GrLayer (S1D13700 LAYER ON) ;

283

MikroElektronika

mikoPascal PRO for PIC32

S1D13700_Display_TxtLayer

Prototype procedure S1D13700 Display TxtLayer (mode : byte);

Returns Nothing.
Description | Display selected text layer.

Parameters:

- mode: text layer mode. Valid values:

Value Description
S1D13700 LAYER OFF Turn off graphic layer.
S1D13700 LAYER ON Turn on graphic layer.
S1D13700 LAYER FLASH 2Hz Turn on graphic layer and flash it at the rate of 2 Hz.
S1D13700 LAYER FLASH 16Hz Turn on graphic layer and flash it at the rate of 16 Hz.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.

Example // Display on text layer
S1D13700 Display TxtLayer (S1D13700 LAYER ON) ;

S1D13700_Set Cursor

Prototype procedure S1D13700 Set Cursor(width : byte; height : byte; mode : byte);

Returns Nothing.
Description | Sets cursor properties.

Parameters:

- width: in pixels-1 (must be less than or equal to the horizontal char size).
- height:inlines-1 (must be less than or equal to the vertical char size).
- mode: cursor mode. Valid values:

Value Description
S1D13700 CURSOR UNDERSCORE Set cursor shape - underscore.
S1D13700 CURSOR BLOCK Set cursor shape - block.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.

Example // set cursor with the following properties : width 5px, height 10px, cursor
shape - block
S1D13700 Set Cursor(5, 10, S1D13700 CURSOR BLOCK) ;

MikroElektronika 284

mikroPascal PRO for PIC32

S1D13700_Display_Cursor

Prototype procedure S1D13700 Display Cursor (mode : byte);
Returns Nothing.
Description | Displays cursor.
Parameters:
- mode: mode parameter. Valid values:
Value Description
S1D13700 CURSOR_OFF Turn off graphic layer.
S1D13700 CURSOR_ON Turn on graphic layer.
S1D13700 CURSOR FLASH 2Hz Turn on graphic layer and flash it at the rate of 2 Hz.
S1D13700 CURSOR_FLASH 16Hz Turn on graphic layer and flash it at the rate of 16 Hz.
Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example // set cursor on
S1D13700 Display Cursor (S1D13700 CURSOR ON) ;

S1D13700_Write_Char

Prototype

procedure S1D13700 Write Char(c : char; x : word; y : word; mode: byte);

Returns

Nothing.

Description

Writes a char in the current text layer of Glcd at coordinates (<, v).

Parameters:

- c: char to be written.

- x: char position on x-axis (column).
- v: char position on y-axis (row).
- mode: mode parameter. Valid values :

Value

Description

S1D13700 OVERLAY OR

In the OR-Mode, text and graphics can be displayed and the data is
logically “OR-ed”.
This is the most common way of combining text and graphics, for
example labels on buttons.

S1D13700 OVERLAY XOR

In this mode, the text and graphics data are combined via the logical
“exclusive OR”.

S1D13700 OVERLAY AND

The text and graphic data shown on display are combined via the logical
“AND function”.

Requires

Glcd module needs to be initialized. See the S1D13700_1Init routine.

Example

S1D13700 Write Char (‘A’,22,23,S1D13700 OVERLAY OR);

285

MikroElektronika

mikoPascal PRO for PIC32

S1D13700_Write_Text

Prototype procedure S1D13700 Write Text(var str : string; x, y : word; mode : byte);

Returns Nothing.
Description | Writes text in the current text panel of Glcd at coordinates (x, v).

Parameters:

- str: text to be written.

- x: text position on x-axis (column).

- v: text position on y-axis (row).

- mode: mode parameter. Valid values :

Value Description

In the OR-Mode, text and graphics can be displayed and the data is
logically “OR-ed”.
This is the most common way of combining text and graphics, for
example labels on buttons.

S1D13700 OVERLAY OR

In this mode, the text and graphics data are combined via the logical

S1D13700 OVERLAY XOR 2 ; .
- - exclusive OR”.

The text and graphic data shown on display are combined via the logical

S1D13700 OVERLAY AND piay
- - - “AND function”.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.

Example S1D13700 Write Text (‘EPSON LIBRARY DEMO, WELCOME !’, 0, 0, S1D13700 OVERLAY
OR) ;

S1D13700_Dot

Prototype procedure S1D13700 Dot (x : word; y : word; color : byte);

Returns Nothing.
Description | Draws a dot in the current graphic panel of Glcd at coordinates (x, y).

Parameters:

- x: dot position on x-axis.
- v: dot position on y-axis.
- color: color parameter. Valid values :

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example S1D13700 Dot (50, 50, S1D13700 WHITE);

MikroElektronika 286

mikroPascal PRO for PIC32

S1D13700_Line

Prototype procedure S1D13700 Line(x0, y0, x1, yl : word; pcolor : byte);

Returns Nothing.

Description | Draws a line from (x0, y0) to (x1, y1).
Parameters:

- x0: x coordinate of the line start.
- y0:y coordinate of the line end.
- x1: x coordinate of the line start.
- y1:y coordinate of the line end.
- pcolor: color parameter. Valid values:

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example S1D13700 Line(0, O, 239, 127, S1D13700 WHITE);

S1D13700_H_Line

Prototype procedure S1D13700 H Line(x start, x end, y pos : word; color : byte);

Returns Nothing.

Description | Draws a horizontal line.
Parameters:

- x_start: x coordinate of the line start.
- x_end: x coordinate of the line end.

- v_pos: line position on the y axis.

- pcolor: color parameter. Valid values :

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example S1D13700 Line(0, 0, 239, 127, S1D13700 WHITE) ;

287 MikroElektronika

mikoPascal PRO for PIC32

S1D13700_V_Line

Prototype procedure S1D13700 V Line(y start, y end, x pos : word; color : byte);

Returns Nothing.

Description | Draws a horizontal line.
Parameters:

-y start:y coordinate of the line start.
- y_end:y coordinate of the line end.

- x_pos: line position on the x axis.

- pcolor: color parameter. Valid values:

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example S1D13700 Line (0, 0, 239, 127, sS1D13700 WHITE) ;

S1D13700_Rectangle

Prototype procedure SlD137007Rectangle(xO, v0, x1, yl : word; pcolor : byte);

Returns Nothing.

Description | Draws a rectangle on Glcd.
Parameters:

- x0: x coordinate of the upper left rectangle corner.
- v0:y coordinate of the upper left rectangle corner.
- x1: x coordinate of the lower right rectangle corner.
- y1:y coordinate of the lower right rectangle corner.
- pcolor: color parameter. Valid values :

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example S1D13700 rectangle (20, 20, 219, 107, S1D13700 WHITE);

MikroElektronika 288

mikroPascal PRO for PIC32

S1D13700_Box

Prototype procedure S1D13700 Box(x0, y0, x1, yl : word; pcolor : byte);

Returns Nothing.

Description | Draws a rectangle on Glcd.
Parameters:

- x0: x coordinate of the upper left rectangle corner.
- v0:y coordinate of the upper left rectangle corner.
- x1: x coordinate of the lower right rectangle corner.
- v1:y coordinate of the lower right rectangle corner.
- pcolor: color parameter. Valid values :

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example S1D13700 Box (0, 119, 239, 127, S1D13700 WHITE) ;

S1D13700_Rectangle_Round_Edges

Prototype procedure sS1D13700 Rectangle Round Edges (x upper left : word; y upper left
word; x bottom right : word; y bottom right : word; round radius : word;
color : byte);

Returns Nothing.

Description | Draws a rounded edge rectangle on Glcd.
Parameters:

-x upper left:x coordinate of the upper left rectangle corner.

-y upper left:y coordinate of the upper left rectangle corner.

- x_bottom right:x coordinate of the lower right rectangle corner.
-y bottom right:y coordinate of the lower right rectangle corner.
- round_radius: radius of the rounded edge.

- pcolor: color parameter. Valid values:

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example S1D13700 Rectangle Round Edges (20, 20, 219, 107, 12, S1D13700 WHITE);

289 MikroElektronika

mikoPascal PRO for PIC32

S1D13700_Rectangle Round_Edges_Fill

Prototype

procedure S1D13700 Rectangle Round Edges Fill (x_upper left

left word;

word;

word; word; y bottom right

color

x bottom right
byte) ;

word; y upper
round radius

Returns

Nothing.

Description

Draws a filled rounded edge rectangle on Glcd.
Parameters:

- x_upper left:x coordinate of the upper left rectangle corner.

-y upper left:y coordinate of the upper left rectangle corner.

-x bottom right:x coordinate of the lower right rectangle corner.
-y bottom right:y coordinate of the lower right rectangle corner.
- round_radius: radius of the rounded edge.

- pcolor: color parameter. Valid values :

Value Description

S1D13700 BLACK Black color.

S1D13700 WHITE White color.

Requires

Glcd module needs to be initialized. See the S1D13700_1Init routine.

Example

S1D13700 Rectangle Round Edges Fill (20, 20, 219, 107, 12,

S1D13700 WHITE) ;

S1D13700_Circle

Prototype

procedure S1D13700 Circle (x_center word;

color byte) ;

word; y center

radius

word;

Returns

Nothing.

Description

Draws a circle on Glcd.
Parameters:

- x_center: x coordinate of the circle center.
-y _center:y coordinate of the circle center.
- radius: radius size.

- color: color parameter. Valid values :

Value Description

S1D13700 BLACK Black color.

White color.

S1D13700_WHITE

Requires

Glcd module needs to be initialized. See the S1D13700_Init routine.

Example

S1D13700 Circle (120, 64, 110, sS1D13700 WHITE) ;

MikroElektronika

290

mikroPascal PRO for PIC32

S1D13700_Circle_Fill

Prototype procedure S1D13700 Circle Fill(x center: word; y center: word; radius:
word; color : byte);
Returns Nothing.
Description | Draws a filled circle on Glcd.
Parameters:
- x_center: x coordinate of the circle center.
-y center:y coordinate of the circle center.
- radius: radius size.
- color: color parameter. Valid values :
Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.
Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example S1D13700 Circle Fill(120, 64, 110, S1D13700 WHITE);

S1D13700_Image

Prototype |procedure s1D13700 Image (const image ~byte) ;
Returns Nothing.
Description | Displays bitmap on Glcd.
Parameters:
- image: image to be displayed. Bitmap array is located in code memory.
Note: Image dimension must match the display dimension.
Requires Glcd module needs to be initialized. See the S1D13700_lInit routine.
Example S1D13700 Image (image) ;

291

MikroElektronika

mikoPascal PRO for PIC32

S1D13700_Partiallmage

Prototype procedure S1D13700 PartiallImage(x left, y top, width, height, picture
width, picture height : word; const image : “byte);
Returns Nothing.
Description | Displays a partial area of the image on a desired location.
Parameters:
- x_left:x coordinate of the desired location (upper left coordinate).
- v _top:y coordinate of the desired location (upper left coordinate).
- width: desired image width.
- height: desired image height.
- picture width: width of the original image.
- picture height: height of the original image.
- image: image to be displayed. Bitmap array is located in code memory.
Note : Image dimension must match the display dimension.
Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example // Draws a 10x15 part of the image starting from the upper left corner on

the coordinate (10,12). Original image size is 16x32.
S1D13700 PartialImage (10, 12, 10, 15, 16, 32, image);

Flash Memory Library

This library provides routines for accessing microcontroller’s (internal) Flash memory.

The program Flash array for the PIC32MX device is built up of a series of rows. A row contains 128 32-bit instruction
words or 512 bytes. A group of 8 rows compose a page; which, therefore, contains 8 1512 = 4096 bytes or 1024
instruction words.

A page of Flash is the smallest unit of memory that can be erased at a single time. The program Flash array can be
programmed in one of two ways:

- Row programming, with 128 instruction words at a time.
- Word programming, with 1 instruction word at a time.

The CPU stalls (waits) until the programming operation is finished. The CPU will not execute any instruction, or respond
to interrupts, during this time. If any interrupts occur during the programming cycle, they remain pending until the cycle

completes.

Library Routines

- Flash_Write_Word
- Flash_Write_ Row
- Flash_Erase_Page

MikroElektronika

292

mikroPascal PRO for PIC32

Flash_Write_Word

Prototype procedure FLASH Erase32(flash address longint) ;
Description | Writes one 32-bit word in the program Flash memory on the designated address.
Parameters | - address: address of the FLASH memory word
- wdata: data to be written
Returns Nothing.
Requires Nothing.
Example
Notes None.

Flash_Write_Row

Prototype procedure FLASH Write Block (flash address longint; data address : word);

Description | Writes one row in the program Flash memory (128 32-bit words or 512 bytes) on the designated
address.

Parameters | - address: address of the FLASH memory word
- rdata: data to be written

Returns Nothing.

Requires Nothing.

Example

Notes None.

Flash_Erase Page

Prototype procedure FLASH Write Init (flash address longint; data address : word);
Description | Erases one page (8 rows, 1024 32-bit word, 4096 bytes) from the program Flash memory.
Parameters | - address: starting address of the FLASH memory block

Returns Nothing.

Requires Nothing.

Example

Notes None.

293

MikroElektronika

mikoPascal PRO for PIC32

Graphic Lcd Library

mikroPascal PRO for PIC32 provides a library for operating Graphic Lcd 128x64 (with commonly used Samsung
KS108/KS107 controller).

For creating a custom set of Glcd images use Glcd Bitmap Editor Tool.

Library Dependency Tree
LGch)—Pt Glcd_Fonts)

MikroElektronika 294

mikroPascal PRO for PIC32

External dependencies of Graphic Lcd Library

The following variables must be defined in all

projects using Graphic Lcd Library: Description: Example:

var GLCD DO : sbit; sfr; external; Data 0 line. var GLCD DO : sbit at RBO bit;

var GLCD D1 : sbit; sfr; external; Data 1 line. var GLCD D1 : shit at RB1 bit;

var GLCD D2 : sbit; sfr; external; Data 2 line. var GLCD D2 : shit at RB2 bit;

var GLCD D3 : sbit; sfr; external; Data 3 line. var GLCD D3 : sbit at RB3 bit;

var GLCD D4 : sbit; sfr; external; Data 4 line. var GLCD D4 : shit at RDO bit;

var GLCD D5 : sbit; sfr; external; Data 5 line. var GLCD D5 : sbit at RD1 bit;

var GLCD D6 : sbit; sfr; external; Data 6 line. var GLCD D6 : shit at RD2 bit;

var GLCD D7 : sbit; sfr; external; Data 7 line. var GLCD D7 : sbit at RD3 bit;

var GLCD Csl : sbit; sfr; external; Chip Select 1 line. var GLCD CSl : sbit at LATB4 bit;
var GLCD Ccs2 : sbit; sfr; external; | Chip Select?2 line. var GLCD CS2 : sbit at LATB5S bit;
var GLCD RS : sbhit; sfr; external; Register select line. var GLCD RS : sbit at LATFO bit;
var GLCD RW : sbit; sfr; external; Read/Write line. var GLCD RW : sbit at LATF1 bit;
var GLCD EN : sbit; sfr; external; Enable line. var GLCD_EN : sbhit at LATF4 bit;
var GLCD RST : sbit; sfr; external; Reset line. var GLCD RST : sbit at LATF5 bit;
var GLCD DO Direction : sbit; sfr; Direction of the Data 0 pin. var GLC]lDiDoiDirection : shit at
external ; TRISBO bit;

var GLCD D1 Direction : sbit; sfr; Direction of the Data 1 pin. var GLC]lDiDliDirection : shit at
external; TRISB1 bit;

var GLCD D2 Direction : sbit; var GLCD D2 Direction : sbit at

sfr: external: Direction of the Data 2 pin. TRISB2 bit;

var GLCD D3 Direction : sbit; sfr;)) . var GLCD D3 Direction : sbit at
- - Direction of the Data 3 pin. -

external ; TRISB3 bit;
var GLCD D4 Direction : sbit; sfr; Direction of the Data 4 pin. | V2" GLCD D4 Direction : sbit at
external; ection otihe Lata & pin. TRISDO bit;
var GLCD D5 Direction : sbit; sfr; Direction of the Data 5 pin. | V2" GLCD D5 Direction : sbit at
external; ection ot the Data o pin. TRISD1 bit;
var GLCD D6 Direction : sbit; sfr; Direction of the Data 6 pin. | V2" GLCD D6 Direction : sbit at
external ; pin. TRISD2 bit;
var GLCD D7 Direction : sbit; sfr; Direction of the Data 7 oin. | V2" GLCD D7 Direction : sbit at
external ; pin. TRISD3 bit;
var GLCD CSl Direction : sbit; sfr; | Direction of the Chip Select | var GLCD Csl Direction : sbit at
external ; 1 pin. TRISB4 bit;
var GLCD CS2 Direction : sbit; sfr; | Direction of the Chip Select | var GLCD Cs2 Direction : sbit at
external ; 2 pin. TRISB5 bit;
var GLCD RS Direction : sbhit; sfTr; | Direction of the Register | var GLCD RS Direction : sbit at
external ; select pin. TRISFO bit;
var GLCD_RW Direction : sbit; sfTr; | Direction of the Read/Write | var GLCD RW_Direction : sbit at
external ; pin. TRISF1 bit;
var GLCD EN Direction : sbit; sfr;| var GLCD EN Direction : shit at
- Direction of the Enable pin. o
external ; TRISF4 bit;
var GLCD RST Direction : sbit; sfr;|_.. . . var GLCD RST Direction : sbit at
- - Direction of the Reset pin. o -
external ; TRISF5 bit;

295 MikroElektronika

mikoPascal PRO for PIC32

Library Routines

Basic routines:

- Gled_Init

- Glcd_Set_Side
- Gled_Set X

- Glcd_Set_Page

- Glcd_Read_Data
- Gled_Write_Data

Advanced routines:

- Gled_Fill

- Gled_Dot

- Gled_Line

- Gled_V_Line

- Gled_H_Line

- Glcd_Rectangle

- Glcd_Rectangle_Round_Edges
- Glcd_Rectangle_Round_Edges_Fill

- Gled_Box

- Gled_Circle

- Gled_Circle_Fill
- Glcd_Set_Font

- Gled_Write_Char
- Gled_Write_Text

- Glcd_Image
- Glcd_Partiallmage

Gled_Init

Prototype

procedure Glcd Init();

Description

Initializes the Glcd module. Each of the control lines are both port and pin configurable, while data
lines must be on a single port (pins <0:7>).

Parameters

None.

Returns

Nothing.

Requires

Global variables:

- GLCD_DO:
: Data pin 1
-GLCD D2 :
- GLCD_D3:
: Data pin 4
D5 :Datapin 5
- GLCD_D6:
- GLCD_D7:
- GLCD_Cs1 : Chip select 1 signal pin
- GLCD Cs2 : Chip select 2 signal pin
- GLCD_ RS : Register select signal pin
- GLCD_RW : Read/Write Signal pin

- GLCD_D1

- GLCD_D4
- GLCD_D5

Data pin 0
Data pin 2
Data pin 3

Data pin 6
Data pin 7

MikroElektronika

296

mikroPascal PRO for PIC32

Requires

- GLCD EN : Enable signa

| pin

- GLCD RST : Reset signal pin

-GLCD DO Direction:
-GLCD D1 Direction:
-GLCD D2 Direction:
-GLCD D3 Direction
-GLCD D4 Direction
-GLCD D5 Direction:
-GLCD D6 Direction:

Direction of the Data pin 0
Direction of the Data pin 1
Direction of the Data pin 2

: Direction of the Data pin 3
: Direction of the Data pin 4

Direction of the Data pin 5
Direction of the Data pin 6

-GLCD D7 Direction : Direction of the Data pin 7

-GLCD Csl Direction : Direction of the Chip select 1 pin

- GLCD CS2 Direction : Direction of the Chip select 2 pin

-GLCD RS Direction : Direction of the Register select signal pin
- GLCD RW Direction : Direction of the Read/Write signal pin

- GLCD EN Direction : Direction of the Enable signal pin

- GLCD RST Direction : Direction of the Reset signal pin

must be defined before using this function.

Example // Glcd module connections

var GLCD_D7 : sbit at RD3_bit;
GLCD_D6 : sbit at RD2 bit;
GLCD_D5 : sbhit at RD1_bit;
GLCD D4 : sbit at RDO_bit;
GLCD_D3 : sbhit at RB3_bit;
GLCD_D2 : sbhit at RB2_bit;
GLCD D1 : sbit at RB1 bit;
GLCD_DO sbit at RBO_bit;
GLCD_D7_| Dlrectlon : sbit at TRISD3 bit;
GLCD_D6_D|rect|on sbit at TRISD2 bit;
GLCD_D5_Direction : shit at TRISD1_bit;
GLCD_D4 Direction sbit at TRISDO_bit;
GLCD_D3 Direction sbit at TRISB3 bit;
GLCD_D2_Direction : shit at TRISB2_bit;
GLCD_D1 Direction sbit at TRISB1_bit;
GLCD_DO Direction sbit at TRISBO bit;
GLCD_CS2 : sbit at LATB5_bit;
GLCD_RS : sbit at LATFO_bit;

GLCD_RW : sbit at LATF1_bit;

GLCD_EN : sbit at LATF4 bit;
GLCD_RST : sbit at LATF5 bit;

var GLCD_CS1_Direction : sbhit at TRISB4_bit;
GLCD CS2 Direction : sbit at TRISB5 bit;
GLCD RS Direction : sbit at TRISFO bit;
GLCD_RW_Direction : sbit at TRISF1_bit;
GLCD _EN Direction : sbit at TRISF4 bit;
GLCD_RST Direction : sbit at TRISF5 bit;
// End Glcd module connections

Glcd_InitQ):

Notes None.

297

MikroElektronika

mikoPascal PRO for PIC32

Glcd_Set_Side
Prototype procedure Glcd Set Side (x_pos: byte);
Description | Selects Glcd side. Refer to the Glcd datasheet for detailed explanation.
Parameters | - x pos: Specifies position on x-axis of the Glcd. Valid values: 0..127. Values from 0 to 63 specify the
left side, values from 64 to 127 specify the right side of the Glcd.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example The following two lines are equivalent, and both of them select the left side of Glcd:
Glcd Select Side(0);
Glcd Select Side(10);
Notes For side, x axis and page layout explanation see schematic at the bottom of this page.
Gled_Set X
Prototype procedure Glcd Set X(x pos: byte);
Description | Sets x-axis position to x pos dots from the left border of Glcd within the selected side.
Parameters | - x pos: position on x-axis. Valid values: 0..63
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example Glcd Set X(25);
Notes For side, x axis and page layout explanation see schematic at the bottom of this page.

Glcd_Set_Page

Prototype procedure Glcd Set Page (page: byte);

Description | Selects page of the Glcd.

Parameters | - page: page number. Valid values: 0..7

Returns Nothing.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example Glcd Set Page (5);

Notes For side, x axis and page layout explanation see schematic at the bottom of this page.

MikroElektronika

298

mikroPascal PRO for PIC32

Glcd_Read Data

Prototype function Glcd Read Data() : byte;
Description | Reads data from from the current location of Glcd memory and moves to the next location.
Parameters | None.
Returns One byte from Glcd memory, formatted as a word (16-bit).
Requires Glcd needs to be initialized, see Glcd_Init routine.
Glcd side, x-axis position and page should be set first. See functions Glcd_Set_Side, Glcd_Set_X,
and Glcd_Set_Page.
Example var data : byte;
(‘}ic‘:diReadiData O);
data := Glcd Read Data();
Notes This routine needs to be called twice; After the first call, data is placed in the buffer register. After the

second call, data is passed from the buffer register to data lines.

Glcd_Write_Data

Prototype |procedure Glcd Write Data(data : byte);
Returns Nothing.
Description | Writes one byte to the current location in Glcd memory and moves to the next location.
Parameters:
- data :data to be written
Requires Glcd needs to be initialized, see Gled_Init routine.
Glcd side, x-axis position and page should be set first. See functions Glcd_Set_Side, Glcd_Set_X,
and Glcd_Set_Page.
Example var data_ : byte;
(.Siéd_Write_Data (data)

299

MikroElektronika

mikoPascal PRO for PIC32

Gled_Fill
Prototype procedure Glcd Fill (pattern: byte);
Description | Fills Glcd memory with the byte pattern.
To clear the Gled screen, use Glcd Fill (0).
To fill the screen completely, use Glcd Fill (OxFF).
Parameters | - pattern: byte to fill Glcd memory with.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example // Clear screen
Gled Fill(0);
Notes None.
Gled_Dot
Prototype procedure Glcd Dot (x pos, y pos, color: byte);
Description | Draws a dot on Glcd at coordinates (x pos, v pos).
Parameters | - x pos: x position. Valid values: 0..127
- y_pos:y position. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines a dot state: O clears dot, 1 puts a dot, and 2 inverts dot state.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example // Invert the dot in the upper left corner
Glcd Dot (0, 0, 2);
Notes For x and y axis layout explanation see schematic at the bottom of this page.
Gled_Line
Prototype procedure GlcdiLine (x start, y start, x end, y end: integer; color: byte);
Description | Draws a line on Glcd.
Parameters | - x start: x coordinate of the line start. Valid values: 0..127
- y_start:y coordinate of the line start. Valid values: 0..63
- x_end: x coordinate of the line end. Valid values: 0..127
- y_end:y coordinate of the line end. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the line color: 0 white, 1 black, and 2 inverts each dot.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example // Draw a line between dots (0,0) and (20,30)
Glcd Line(0, 0, 20, 30, 1);
Notes None.

MikroElektronika

300

mikroPascal PRO for PIC32

Gled_V_Line
Prototype procedure Glcdi\/iLine (y start, y end, x pos, color: byte);
Description | Draws a vertical line on Glcd.
Parameters |-y start:y coordinate of the line start. Valid values: 0..63
- y_end:y coordinate of the line end. Valid values: 0..63
- x_pos: X coordinate of vertical line. Valid values: 0..127
- color: color parameter. Valid values: 0..2
The parameter color determines the line color: 0 white, 1 black, and 2 inverts each dot.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example // Draw a vertical line between dots (10,5) and (10,25)
Glcd V Line (5, 25, 10, 1);
Notes None.
Glcd_H_Line
Prototype procedure Glcd H Line(x start, x end, y pos, color: byte);
Description | Draws a horizontal line on Glcd.
Parameters |- x start: x coordinate of the line start. Valid values: 0..127
- x_end: x coordinate of the line end. Valid values: 0..127
- v_pos:y coordinate of horizontal line. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the line color: O white, 1 black, and 2 inverts each dot.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example // Draw a horizontal line between dots (10,20) and (50,20)
Gled H Line (10, 50, 20, 1);
Notes None.

301

MikroElektronika

mikoPascal PRO for PIC32

Glcd_Rectangle

Prototype procedure Glcd Rectangle (x_upper left, vy upper left, x bottom right, y_
bottom right, color: byte);
Description | Draws a rectangle on Glcd.
Parameters | - x upper left:x coordinate of the upper left rectangle corner. Valid values: 0..127
-y upper left:y coordinate of the upper left rectangle corner. Valid values: 0..63
- x_bottom right:x coordinate of the lower right rectangle corner. Valid values: 0..127
-y bottom right:y coordinate of the lower right rectangle corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the rectangle border: 0 white, 1 black, and 2 inverts
each dot.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example // Draw a rectangle between dots (5,5) and (40,40)
Glcd Rectangle(5, 5, 40, 40, 1);
Notes None.

Glcd_Rectangle_Round_Edges

Prototype procedure Glcd Rectangle Round Edges (x_upper left: byte; y upper left: byte;
x bottom right: byte; y bottom right: byte; radius: byte; color: byte);
Description | Draws a rounded edge rectangle on Glcd.
Parameters | - x upper left:x coordinate of the upper left rectangle corner. Valid values: 0..127
-y upper left:y coordinate of the upper left rectangle corner. Valid values: 0..63
- x_bottom right:x coordinate of the lower right rectangle corner. Valid values: 0..127
-y bottom right:y coordinate of the lower right rectangle corner. Valid values: 0..63
- round_radius: radius of the rounded edge.
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the rectangle border: 0 white, 1 black, and 2 inverts
each dot.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example // Draw a rounded edge rectangle between dots (5,5) and (40,40) with the
radius of 12
Glcd Rectangle Round Edges (5, 5, 40, 40, 12, 1);
Notes None.

MikroElektronika

302

mikroPascal PRO for PIC32

Glcd_Rectangle_Round_Edges_Fill

Prototype procedure Glcd Rectangle Round Edges Fill (x_upper left: byte; y upper left:
byte; x bottom right: byte; y bottom right: byte; radius: byte; color:
byte);

Description | Draws a filled rounded edge rectangle on Glcd with color.

Parameters | - x_upper left:x coordinate of the upper left rectangle corner. Valid values: 0..127
-y upper left:y coordinate of the upper left rectangle corner. Valid values: 0..63
-x bottom right:x coordinate of the lower right rectangle corner. Valid values: 0..127
-y bottom right:y coordinate of the lower right rectangle corner. Valid values: 0..63
- round radius: radius of the rounded edge
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the rectangle border: O white, 1 black, and 2 inverts
each dot.

Returns Nothing.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example // Draws a filled rounded edge rectangle between dots (5,5) and (40,40) with
the radius of 12
Glcd Rectangle Round Edges Fill(5, 5, 40, 40, 12, 1);

Notes None.

Glcd_Box

Prototype procedure Glcd Box(x upper left, vy upper left, x bottom right, y bottom
right, color: byte);

Description | Draws a box on Glcd.

Parameters:

Parameters |- x upper left:x coordinate of the upper left box corner. Valid values: 0..127
-y upper left:y coordinate of the upper left box corner. Valid values: 0..63
-x bottom right:x coordinate of the lower right box corner. Valid values: 0..127
-y bottom right:y coordinate of the lower right box corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the box fill: 0 white, 1 black, and 2 inverts each dot.

Returns Nothing.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example // Draw a box between dots (5,15) and (20,40)

Glcd Box (5, 15, 20, 40, 1);

Notes None.

303

MikroElektronika

mikoPascal PRO for PIC32

Glcd_Circle

Prototype

procedure Glcd Circle(x_center, y center, radius: integer; color: byte);

Description

Draws a circle on Glcd.

Parameters

- x_center: x coordinate of the circle center. Valid values: 0..127
- v _center:y coordinate of the circle center. Valid values: 0..63
- radius: radius size

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the circle line: 0 white, 1 black, and 2 inverts each dot.

Returns Nothing.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example // Draw a circle with center in (50,50) and radius=10
Glcd Circle (50, 50, 10, 1);

Notes None.

Glcd_Circle_Fill

Prototype procedure Glcd Circle Fill(x center: integer; y center: integer; radius:
integer; color: byte);

Description | Draws a filled circle on Glcd.

Parameters | - x center: x coordinate of the circle center. Valid values: 0..127
- v _center:y coordinate of the circle center. Valid values: 0..63
- radius: radius size
- color: color parameter. Valid values: 0..2

Returns Nothing.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example // Draws a filled circle with center in (50,50) and radius=10
Glcd Circle Fill (50, 50, 10, 1);

Notes None.

MikroElektronika

304

mikroPascal PRO for PIC32

Glcd_Set_Font

Prototype

procedure Glcd Set Font (const activeFont: “byte; aFontWidth, aFontHeight
byte; aFontOffs : byte);

Description

Sets font that will be used with Glcd_Write_Char and Glcd_Write_Text routines.

Parameters

- activeFont: font to be set. Needs to be formatted as an array of char

- aFontiidth: width of the font characters in dots.

- aFontHeight: height of the font characters in dots.

- aFontOf f£s: number that represents difference between the mikroPascal PRO for PIC32 character
set and regular ASCII set (eg. if ‘A’ is 65 in ASCII character, and ‘A’ is 45 in the mikroPascal PRO for
PIC32 character set, aFontOffs is 20). Demo fonts supplied with the library have an offset of 32, which
means that they start with space.

The user can use fonts given in the file “__Lib_ GLCDFonts” file located in the Uses folder or create
his own fonts.

List of supported fonts:

-Font Glcd System3x5

-Font Glcd Systemb5x7
-Font Glcd 5x7

-Font Glcd Character8x7

For the sake of the backward compatibility, these fonts are supported also:

- System3x5 (equivalentto Font Glcd System3x5)

- FontSystem5x7 v2 (equivalentto Font Glcd Systemb5x7)
- font5x7 (equivalentto Font Glcd 5x7)

- Character8x7 (equivalentto Font Glcd Character8x7)

Returns

Nothing.

Requires

Glcd needs to be initialized, see Glcd_Init routine.

Example

// Use the custom 5x7 font “myfont” which starts with space (32):
Glcd Set Font (&myfont, 5, 7, 32);

Notes

None.

305

MikroElektronika

mikoPascal PRO for PIC32

Glcd_Write_Char

Prototype procedure Glcd Write Char(character, x pos, page num, color : byte);
Description | Prints character on the Glcd.
Parameters | - character: character to be written
- x_pos: character starting position on x-axis. Valid values: 0..(127-FontWidth)
- page num: the number of the page on which character will be written. Valid values: 0..7
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the character: 0 white, 1 black, and 2 inverts each dot.
Returns Nothing.
Requires Gled needs to be initialized, see Glcd_Init routine. Use Glcd_Set_Font to specify the font for display; if
no font is specified, then default Font Glcd System5x7 font supplied with the library will be used.
Example // Write character “C” on the position 10 inside the page 2:
Glcd Write Char(‘Cc’, 10, 2, 1);
Notes For x axis and page layout explanation see schematic at the bottom of this page.

Glcd_Write_Text

Prototype procedure Glcd Write Text(var text: sString; x pos, page num, color
byte) ;
Description | Prints text on Glcd.
Parameters | - text: text to be written
- x_pos: text starting position on x-axis.
- page num: the number of the page on which text will be written. Valid values: 0..7
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the text: 0 white, 1 black, and 2 inverts each dot.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine. Use Glcd_Set_Font to specify the font for display; if
no font is specified, then default Font Glcd System5x7 font supplied with the library will be used.
Example // Write text “Hello world!” on the position 10 inside the page 2:
Glcd Write Text (“Hello world!”, 10, 2, 1);
Notes For x axis and page layout explanation see schematic at the bottom of this page.

MikroElektronika

306

mikroPascal PRO for PIC32

Gled_Image

Prototype procedure Glcd Image (const image: “byte);

Description | Displays bitmap on Glcd.

Parameters | - image: image to be displayed. Bitmap array can be located in both code and RAM memory (due to
the mikroPascal PRO for PIC32 pointer to const and pointer to RAM equivalency).

Returns Nothing.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example // Draw image my_image on Glcd
Glcd Image (my image);

Notes Use the mikroPascal PRO for PIC32 integrated Glcd Bitmap Editor, Tools > Glcd Bitmap Editor, to

convert image to a constant array suitable for displaying on Glcd.

Glcd_Partiallmage

Prototype

procedure Glcd PartialImage (x_left, width,

picture height : word; const image

y_top, height, picture width,

“byte) ;

Description

Displays a partial area of the image on a desired location.

Parameters

- x_left:x coordinate of the desired location (upper left coordinate).

-y _top:y coordinate of the desired location (upper left coordinate).

- width: desired image width.

- height: desired image height.

- picture width: width of the original image.

- picture height: height of the original image.

- image: image to be displayed. Bitmap array can be located in both code and RAM memory (due to
the mikroPascal PRO for PIC pointer to const and pointer to RAM equivalency).

Returns

Nothing.

Requires

Glcd needs to be initialized, see Glcd_Init routine.

Example

// Draws a 10x15 part of the image starting from the upper left corner on
the coordinate (10,12). Original image size iIs 16x32.
Glcd pPartialImage (10, 12, 10, 15, 16, 32, image);

Notes

Use the mikroPascal PRO for PIC32 integrated Glcd Bitmap Editor, Tools > Glcd Bitmap Editor, to
convert image to a constant array suitable for displaying on Glcd.

307

MikroElektronika

mikoPascal PRO for PIC32

12C Library

The I2C full master I12C module is available with a number of the PIC32 MCU models. The mikroPascal PRO for PIC32
provides a library which supports the master I1°C mode.

Important :

- I?C library routines require you to specify the module you want to use. To select the desired I1°C module, simply
change the letter x in the routine prototype for a number from 1 to 3.
- Number of I?°C modules per MCU differs from chip to chip. Please, read the appropriate datasheet before utilizing

this library.

Library Routines

- 12Cx_Init

- 12Cx_Init_Advanced

- 12Cx_Start

- 12Cx_Restart

-12Cx_Is_lIdle

- 12Cx_Read

- 12Cx_Write

- 12Cx_Stop
12Cx_Init

Prototype |procedure I2Cx Init(scl : longint);

Description | This function configures and initializes the desired I1°C module with default settings.
This function enables the I?C module by setting the I2CEN bit. The rest of the bits in I?C control register
remains unchanged. Default initialization (after reset) of I2C module is:

- Continue operation in IDLE mode.

- 7-bit slave address.

- Slew rate control enabled for High Speed mode (400 kHz).

- General call address disabled.

- SCL clock stretching disabled.

As per the I?C standard, SCL clock may be 100 kHz or 400 kHz. However, the user can specify any
clock rate up to 1 MHz.

Parameters | - sc1: requested serial clock rate.

Returns Nothing.

Requires MCU with the I1)C module.

Example // Initialize the 12C1 module with clock rate of 100000
I2C1 Init(100000);

Notes Refer to the MCU’s datasheet for correct values of the scl in respect with Fosc.

I2C library routines require you to specify the module you want to use. To select the desired I1°C
module, simply change the letter x in the routine prototype for a number from 1 to 3.

Number of I2C modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

MikroElektronika 308

mikroPascal PRO for PIC32

12Cx_Init_Advanced

Prototype procedure IZCxilnitiAdvanced (Fclk Khz, scl : dword);
Description | This function configures and initializes the desired I1°C module using Peripheral Bus Clock and default
initialization settings.
As per the I?C standard, SCL clock may be 100 kHz or 400 kHz. However, the user can specify any
clock rate up to 1 MHz.
Parameters |- Fclk Khz: Peripheral Bus Clock frequency in kHz.
- sc1: requested serial clock rate.
Returns Nothing.
Requires MCU with the I1°C module.
Example
Notes - I12C library routines require you to specify the module you want to use. To select the desired I?C
module, simply change the letter x in the routine prototype for a number from 1 to 5.
- Number of I?C modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.
|I2Cx_Start
Prototype |procedure I12Cx Start();
Description | Determines if the I?C bus is free and issues START signal.
Parameters | None.
Returns Nothing.
Requires MCU with at least one I1°C module.
Used I°C module must be initialized before using this function. See 12Cx_Init routine.
Example // l1ssue START signal
I2C1 Start();
Notes - I12C library routines require you to specify the module you want to use. To select the desired I°C

module, simply change the letter x in the routine prototype for a number from 1 to 5.

- Number of I°C modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

309

MikroElektronika

mikoPascal PRO for PIC32

12Cx_Restart

Prototype |procedure I2Cx Restart();
Description | Issues repeated START signal.
Parameters | None.
Returns Nothing.
Requires MCU with at least one I°C module.
Used I*C module must be initialized before using this function. See 12Cx_Init routine.
Example // l1ssue RESTART signal
I2C1 Restart();
Notes - I2C library routines require you to specify the module you want to use. To select the desired I1°C
module, simply change the letter x in the routine prototype for a number from 1 to 5.
- Number of I?°C modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.
12Cx_Is_lIdle
Prototype function I2Cx Is Idle() : word;
Description | Waits for the I2C bus to become free. This is a blocking function.
Parameters | None.
Returns - 0 if I’C bus is free.
- 1 if I*C bus is not free.
Requires MCU with at least one I1°C module.
Used I2°C module must be initialized before using this function. See 12Cx_Init routine.
Example var data_: byte;
if ! (I2C1 Is Idle)
I2Cl Write(data);
Notes - I2C library routines require you to specify the module you want to use. To select the desired I°C
module, simply change the letter x in the routine prototype for a number from 1 to 5.
- Number of I12C modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

MikroElektronika

310

mikroPascal PRO for PIC32

I2Cx_Read
Prototype | function I2Cx Read(ack : word) : byte;
Description | Reads a byte from the I2C bus.
Parameters | - ack: acknowledge signal parameter. If the ack = 0, acknowledge signal will be sent after reading,
otherwise the not acknowledge signal will be sent.
Returns Received data.
Requires MCU with at least one I?°C module.
Used I°C module must be initialized before using this function. See 12Cx_Init routine.
Also, START signal needs to be issued in order to use this function. See 12Cx_Start.
Example var take : byte;
// Read data and send the not acknowledge signal
take := I2Cl1 Read(1l);
Notes - I2C library routines require you to specify the module you want to use. To select the desired 12C
module, simply change the letter x in the routine prototype for a number from 1 to 5.
- Number of I?C modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.
12Cx_Write
Prototype function I2Cx Write(data : byte) : word;
Description | Sends data byte via the I°C bus.
Parameters | - data :data to be sent
Returns - 0 if there were no errors.
- 1 if write collision was detected on the I°C bus.
Requires MCU with at least one I1°C module.
Used I°C module must be initialized before using this function. See 12Cx_lInit routine.
Also, START signal needs to be issued in order to use this function. See 12Cx_Start.
Example var data_ : byte;
error : word;
error := I2Cl Write(data);
error := I2Cl Write (0xA3);
Notes - I2C library routines require you to specify the module you want to use. To select the desired I1°C

module, simply change the letter x in the routine prototype for a number from 1 to 5.

- Number of I1)C modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

311

MikroElektronika

mikoPascal PRO for PIC32

I2Cx_Stop

Prototype |procedure I2Cx Stop();

Description [Issues STOP signal.

Parameters | None.

Returns Nothing.

Requires MCU with at least one I°C module.

Used I2C module must be initialized before using this function. See 12Cx_lInit routine.

Example // l1ssue STOP signal
I2C1 Stop();

Notes - I2C library routines require you to specify the module you want to use. To select the desired I1°C
module, simply change the letter x in the routine prototype for a number from 1 to 5.

- Number of I?C modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

Library Example

This code demonstrates working with the 12C library. Program sends data to EEPROM (data is written at the address
2). After that, program reads data from the same EEPROM address and displays it on PORTB for visual check. See the
figure below how to interface the 24C02 to PIC32.

Copy Code To Clipboard

program I2C Simple;

var i, b : char;

procedure EEPROM 24C02 Init();

begin
I2C2 Init(100000);
end;
[/ =mmmmmmm——————— Writes data to 24C02 EEPROM - signle location
procedure EEPROM 24C02 WrSingle (wAddr : byte; wData : byte);
begin
I2C2 Start(); // 1ssue I2C start signal
I2C2 Write (0xAQ); // send byte via I2C (command to 24c02)
I2C2 Write (wAddr) ; // send byte (address of EEPROM location)
I2C2 Write (wData); // send data (data to be written)

12C2_Stop () ;

end;
[/ Reads data from 24C02 EEPROM - single location (random)
function EEPROM 24C02 RdSingle (rAddr : byte) : byte;
begin
I2C2 Start(); // issue I2C start signal
I2C2 Write (0xA0D); // send byte via I2C (device address + W)
I2C2 Write (rAddr); // send byte (data address)
I2C2 Restart(); // issue I2C signal repeated start
I2C2 Write (0xAlL); // send byte (device address + R)

MikroElektronika 312

mikroPascal PRO for PIC32

en

begi
CH
AD

LA
TR
TR
TR
LA
LA
TR

EEPROM 24C02 Init();

result := I2C2 Read(l);

I2C2 Stop();
d;

n

ECON := 0x30;
1PCFG := OxFFFFFFFF;

B := 0
ISB :=
ISA
ISD
TD := 0;
TF := 0;
ISF := 0;

0;
0;
0

’

// Read the data (NO acknowledge)

// Set PORTB value to zero
// Configure PORTB as output

// performs I2C initialization

b := 0x00;
for i := 0x00 to 0x80 do
begin
EEPROM 24C02 WrSingle(i,b);
Inc (b);
Delay ms(5); //max vrednost za upis u eeprom
end;
for i := 0x00 to 0x80 do
begin
LATD := i;
LATB := EEPROM724C027RdSingle(i);
Delay ms (100);
end;
end.

313

MikroElektronika

mikoPascal PRO for PIC32

Keypad Library

mikroPascal PRO for PIC32 provides a library for working with 4x4 keypad. The library routines can also be used with
4x1, 4x2, or 4x3 keypad. For connections explanation see schematic at the bottom of this page.

External dependencies of Keypad Library

The following variable must be defined N .
. .) } . Description: Example:
in all projects using Keypad Library:
var keypadPort : word; Sfr;
o . ner Keypad Port. var keypadPort : byte at PORTE;
external;
var keypadPort Direction : word; var keypadPort Direction : byte at
sfr; external; Keypad Port. TRISB;

Library Routines

- Keypad_Init
- Keypad_Key Press
- Keypad_Key_Click

Keypad_ Init
Prototype |procedure Keypad Init();
Description | Initializes given port for working with keypad.
Parameters | None.
Returns Nothing.
Requires Global variable:
- keypadPort - Keypad port
must be defined before using this function.
Example // Keypad module connections
var keypadPort : byte at PORTB;
var keypadPort_Direction : byte at TRISB;
// End of keypad module connections
Keypad_InitQ;
Notes The Keypad library uses lower byte (bits <7..0>) of keypadpPort.

MikroElektronika

314

mikroPascal PRO for PIC32

Keypad_Key Press

Prototype function Keypad Key Press(): word;
Description | Reads the key from keypad when key gets pressed.
Parameters | None.
Returns The code of a pressed key (1..16).
If no key is pressed, returns 0.
Requires Port needs to be initialized for working with the Keypad library, see Keypad_Init.
Example var kp : word;
kp := Keypad Key Press();
Notes None

Keypad_Key_ Click

Prototype function Keypad Key Click(): word;

Description | Call to Keypad Key Click is a blocking call: the function waits until some key is pressed and
released. When released, the function returns 1 to 16, depending on the key. If more than one key is
pressed simultaneously the function will wait until all pressed keys are released. After that the function
will return the code of the first pressed key.

Parameters | None.

Returns The code of a clicked key (1..16).

If no key is clicked, returns 0.

Requires Port needs to be initialized for working with the Keypad library, see Keypad_Init.

Example kp = Keypad Key Click();

Notes None

315

MikroElektronika

mikoPascal PRO for PIC32

Library Example

The following code can be used for testing the keypad. It is written for keypad_4x3 or _4x4. The code returned by the
keypad functions (1..16) is transformed into ASCII codes [0..9,A..F], and then sent via UART1.

Copy Code To Clipboard

program Keypad Test;
var kp, oldstate : byte;
txt : array[6] of char;

// Keypad module connections

var keypadPort : dword at PORTD;

var keypadPort Direction : dword at TRISD;
// End Keypad module connections

begin
oldstate := 0;
ADIPCFG := OxFFFF;
CHECON := 0x32;
UART1 Init(19200); // Initialize UART module at 9600 bps
Delay ms (10) ;
Keypad Init(); // Initialize Keypad

UART1 Write Text (‘Press any key on your keypad...’);
UART1 Write(10);
UART1 Write(13);

while TRUE do
begin
kp := 0; // Reset key code variable

// Wait for key to be pressed and released
whille (kp = 0) do
kp := Keypad Key Click(); // Store key code in kp variable

LATB := kp;
// Prepare value for output, transform key to it’s ASCII value
case kp of

//case 10: kp = 42; /] Nx // Uncomment this block for keypad4x3
//case 11: kp = 48; // 07
//case 12: kp = 35; VAT 4

//default: kp += 48;

1: kp = 49; // 1 // Uncomment this block for keypadidx4
2: kp := 50; // 2
3: kp := 51; // 3
4: kp := 65; // A
5: kp := 52; // 4
6: kp := 53; // 5
7: kp := 54; // 6
8: kp := 66; // B
9: kp := 55; // 7
10: kp := 56; // 8
11: kp := 57; // 9
12: kp := 67; // C

MikroElektronika 316

mikroPascal PRO for PIC32

end.

13: kp := 42; // *

14: kp := 48; // O

15: kp := 35; // #

16: kp := 68; // D
end;

UART1 Write Text (‘Key pressed: ‘);

UART1 Write (kp
UART1 Write (10);
UART1 Write (13

end;

);

HW Connection

J J
SO

o g o g R
= a2
[oRog oo

D

0
WCC3

4x4 Keypad connection scheme

GO

LTI OO oo

UUUUUUUUUUUE

c

=
(2]
9]
@

)i // Send value of pressed button to UART

317

MikroElektronika

mikoPascal PRO for PIC32

Lcd Library

mikroPascal PRO for PIC32 provides a library for communication with Lcds (with HD44780 compliant controllers)
through the 4-bit interface. An example of Lcd connections is given on the schematic at the bottom of this page.

For creating a set of custom Lcd characters use Lcd Custom Character Tool.

Library Dependency Tree

L Led)—Pt Lcd_Constants)

Keypad_Key Click

The following variables must be defined

))) . Description: Example:

in all projects using Lcd Library: P P

var LCD RS : shit; sfr; external; | Register Select line. var LCD RS : sbit at LATDO bit;

var LCD EN : sbit; sfr; external; | Enable line. var LCD_EN : sbit at LATDI bit;

var LCD D7 : shit; sfr; external; | Data7 line. var LCD D7 : sbit at LATB3 bit;

var LCD D6 : shit; sfr; external; | Data6 line. var LCD D6 : sbit at LATB2 bit;

var LCD D5 : sbit; sfr; external; | Data5 line. var LCD D5 : sbit at LATB1 bit;

var LCD D4 : shit; sfr; external; | Data4 line. var LCD D4 : sbit at LATBO bit;

var LCD RS Direction : sbit; sfr; Reaister Select direction pin var LCD RS Direction : sbit at
external; 9 pin. TRISDO bit;

var LCD EN Direction : sbit; sfr; Enable direction pin var LCD EN Direction : shit at
external; pin. TRISD1 bit;

var LCD D7 Direction : sbit; sfr; Data 7 direction pin var LCD D7 Direction : shit at
external ; pin. TRISB3 bit;

var LCD D6 Direction : sbit; sfr; Data 6 direction pin var LCD D6 Direction : sbhit at
external; pin. TRISB2 bit;

var LCD D5 Direction : sbit; sfr; Data 5 direction pin var LCD D5 Direction : sbit at
external ; pin. TRISB1 bit;

var LCD D4 Direction : sbit; sfr; Data 4 direction bin var LCD D4 Direction : shit at
external; pin. TRISBO bit;

Library Routines

- Led_Init

- Led _Out
-Lcd Out Cp
-Led _Chr
-Lcd _Chr_Cp
-Lcd Cmd

MikroElektronika 318

mikroPascal PRO for PIC32

Led_Init

Prototype |procedure Lcd Init();

Description | Initializes Lcd module.

Parameters | None.

Returns Nothing.

Requires Global variables:

- LCD _D7: Data bit 7

- LCD Dé6: Data bit 6

- LCD DS5: Data bit 5

- LCD_D4: Data bit 4

- LCD Rs: Register Select (data/instruction) signal pin
- LCD_EN: Enable signal pin

-LCD D7 Direction: Direction of the Data 7 pin

-LCD D6 Direction: Direction of the Data 6 pin

-1LCD D5 Direction: Direction of the Data 5 pin

-LCD D4 Direction: Direction of the Data 4 pin

-LCD RS Direction: Direction of the Register Select pin
-LCD EN Direction: Direction of the Enable signal pin

must be defined before using this function.

Example // LCD module connections

var LCD_RS : sbit at LATDO_bit;
var LCD_EN : sbit at LATDl_blt
var LCD_D4 : sbit at LATBO_bit;
var LCD D5 : sbit at LATB1 bit;
var LCD D6 : sbit at LATB2 bit;
var LCD_D7 : sbit at LATB3_bit;

var LCD_RS Direction : sbit at TRISDO bit;
var LCD_EN_Direction : sbhit at TRISD1_bit;
var LCD D4 Direction : sbit at TRISBO bit;
var LCD_D5 Direction : sbit at TRISB1 bit;
var LCD_D6 Direction : sbhit at TRISB2_bit;
var LCD D7 Direction : sbit at TRISB3 bit;
// End LCD module connectlons

Led_InitQ);
Notes None

319 MikroElektronika

mikoPascal PRO for PIC32

Lcd Out
Prototype procedure Lcd Out (row, column: word; var text: sString);
Description | Prints text on Lcd starting from specified position. Both string variables and literals can be passed as
a text.
Parameters | - row: starting position row number
- column: starting position column number
- text: text to be written
Returns Nothing.
Requires The Lcd module needs to be initialized. See Lcd_Init routine.
Example // Write text “Hello!” on Lcd starting from row 1, column 3:
Lcd Out (1, 3, “Hello!”);
Notes None
Led _Out Cp
Prototype procedure Lcd Out Cp (var text: string);
Returns Nothing.
Description | Prints text on Lcd at current cursor position. Both string variables and literals can be passed as a
text.
Parameters | - text: text to be written
Requires The Lcd module needs to be initialized. See Lcd_Init routine.
Example // Write text “Here!” at current cursor position:
Lcd Out Cp (“Here!”);
Notes None
Led_Chr
Prototype procedure Lcd Chr (row, column: word, out char: byte);
Description | Prints character on Lcd at specified position. Both variables and literals can be passed as a
character.
Parameters | - row: writing position row number
- column: writing position column number
- out char: character to be written
Returns Nothing.
Requires The Lcd module needs to be initialized. See Lcd_Init routine.
Example // Write character “i” at row 2, column 3:
Led Chr(2, 3, ‘i’);
Notes None

MikroElektronika 320

mikroPascal PRO for PIC32

Lcd Chr_Cp

Prototype |procedure Lcd Chr Cp(out char: byte);

Description | Prints character on Lcd at current cursor position. Both variables and literals can be passed as a
character.

Parameters | - out char: character to be written

Returns Nothing.
Requires The Lcd module needs to be initialized. See Lcd_Init routine.
Example // Write character *“e” at current cursor position:
Lcd Chr Cp(te’);
Notes None
Led Cmd

Prototype |procedure Lcd Cmd(out char: byte);

Description | Sends command to Lcd.

Parameters | - out char: command to be sent

Returns Nothing.
Requires The Lcd module needs to be initialized. See Led_Init table.

Example // Clear Lcd display:
Lecd Cmd (. LCD CLEAR) ;

Notes Predefined constants can be passed to the function, see Available Lcd Commands.

Available Lcd Commands

Lcd Command Purpose

_LCD_FIRST ROW Move cursor to the 1st row
_LCD_SECOND_ROW Move cursor to the 2nd row
_LCD_THIRD ROW Move cursor to the 3rd row
_LCD_FOURTH ROW Move cursor to the 4th row
_LCD_CLEAR Clear display

Return cursor to home position, returns a shifted display to its

RO RETURI_HOME original position. Display data RAM is unaffected.

_LCD_CURSOR_OFF Turn off cursor

_LCD UNDERLINE ON Underline cursor on

_LCD_BLINK CURSOR ON Blink cursor on

_LCD MOVE CURSOR LEFT Move cursor left without changing display data RAM
_LCD_MOVE CURSOR RIGHT Move cursor right without changing display data RAM
_LCD_TURN_ON Turn Lcd display on

_LCD_TURN_ OFF Turn Lcd display off

_LCD_SHIFT LEFT Shift display left without changing display data RAM
_LCD_SHIFT RIGHT Shift display right without changing display data RAM

321 MikroElektronika

mikoPascal PRO for PIC32

Library Example

The following code demonstrates usage of the Lcd Library routines:

Copy Code To Clipboard

program Lcd_COG_2x16;

// LCD module connections
LCD_RS : sbit at LATB2_bit;
LCD_EN : sbit at LATB3_bit;
LCD D4 : sbit at LATB4 bit;
LCD_D5 : sbhbit at LATB5_bit;
LCD_D6 : sbit at LATB6_bit;
LCD D7 : sbit at LATB7_bit;

var
var
var
var
var
var

var
var
var
var
var
var

LCD_RS_Direction : sbhit at
LCD_EN Direction : sbit at
LCD_D4 Direction : shit at
LCD_D5_Direction : shit at
LCD D6 Direction : sbhit at
LCD_D7 Direction : shit at

// End LCD modulle connections

var

txtl : array[16] of char;
txt2 : array[10] of char;
txt3 : array[8] of char;
txt4 : array[7] of char;
i I byte;

procedure Move_Delay();

begin
Delay_ms(500);
end;
begin
CHECON := 0x32;
AD1PCFG := OxFFFF;
txtl = “mikroElektronika’;
t>t2 = “LV32MX v67;
t™@t3 = “Lcd4bit’;
txtd = “example”;

Led_InitQ);
Lcd_Cmd(_LCD_CLEAR);
Lcd_Cmd(_LCD_CURSOR_OFF);
LCD_Out(1,6,txt3);
LCD_Out(2,6,txt4);
Delay_ms(2000);
Lcd_Cmd(_LCD_CLEAR);

LCD_Out(l,1,txtl);
Lcd_Out(2,4,txt2);
Delay ms(500);

TRISB2_bit;
TRISB3_bit;
TRISB4_bit;
TRISB5_bit;
TRISB6_bit;
TRISB7_bit;

//
//
/77

//

Loop variable
Function used for text moving

You can change the moving speed here

Configure AN pins as digital 1/0

Initialize LCD

Clear display

Cursor off

Write text in first row
Write text in second row

Clear display

Write text in first row
Write text in second row

MikroElektronika

322

mikroPascal PRO for PIC32

// Moving text

for i:=0 to 3 do // Move text to the right 4 times

begin
Led Cmd(LCD SHIFT RIGHT) ;
Move Delay () ;

end;
while TRUE do // Endless loop
begin
for i:=0 to 7 do // Move text to the left 7 times
begin
Led Cmd(LCD SHIFT LEFT) ;
Move Delay () ;
end;
for i:=0 to 7 do // Move text to the right 7 times
begin
Led Cmd(LCD SHIFT RIGHT) ;
Move Delay () ;
end;
end;
end.
WCC3
nnnnnnnnnnnnnnﬁnnnnnnnnnn
vees [* g i
VoC

GO
o

PIC32MX460F512L =

1] UUUUUUUUUTI

=

UUUUUUUUUUUE

vcc

.' FEEFEEEFEEEERERS

HrrhEntE T heEee
kol lekbronil

LCD (COG) 2X16
Lcd HW connection

=
o
=}
@

OSCILLATOR

323

MikroElektronika

mikoPascal PRO for PIC32

Memory Manager Library

This library provides routines for accessing microcontroller’s (internal) Flash memory.

Library Routines

- Heap_|Init
- malloc

- free

- LargestFreeMemBlock
- TotalFreeMemSize

Heap_Init

Prototype |procedure Heap Init();

Description | Sets Heap size.

Parameters | None.

Returns Nothing.

Requires Nothing.

Example const HEAP SIZE = 3000; // declare Heap size
Heap Init(); // set Heap size

Notes None.

GetMem

Prototype procedure GetMem (var P: “dword; WantedSize: word):;

Description | Fetches memory from the memory heap.

Parameters | - Wantedsize: pointer to the fetched memory
- WantedSize: size in bytes of the dynamic variable to allocate

Returns Returns a pointer to the fetched memory (of “WantedSize” bytes) in P if success; Otherwise 0 (no free
blocks of memory are large enough).

Requires Nothing.

Example GetMem (ptr,20*sizeof (PBuffer)); // ptr will point to a memory block where
PRBuffer is allocated

Notes None.

MikroElektronika 324

mikroPascal PRO for PIC32

FreeMem

Prototype procedure FreeMem (var P: “dword; ActualSize: word);

Description | FreeMem destroys the variable referenced by P and returns its memory to the heap.

Parameters | - p: variable of any pointer type previously assigned by the Getmem procedure.
- Actualsize: specifies the size in bytes of the dynamic variable to dispose of and should be the
same as the one used to Getmem.

Returns Nothing.

Requires Nothing.

Example FreeMem (ptr,20*sizeof (PBuffer)); // ptr will point to a memory block where
PRuffer is allocated

Notes None.

MM _ LargestFreeMemBlock

Prototype function MM LargestFreeMemBlock () : word;
Description | This function is used to determine largest available free memory block for the Heap.
Parameters | None.
Returns Returns, after defragmentation of the freelist the size (in bytes) of the largest free block of contiguous
memory on the heap.
Requires Nothing.
Example var block : word;
begin
block := MM LargestFreeMemBlock();
end;
Notes None.

MM _TotalFreeMemSize

Prototype function MM TotalFreeMemSize () : word;
Description | This function is used to determine total free memory size on the heap.
Parameters | None.
Returns Returns the size (in bytes) of the total free memory on the heap.
Requires Nothing.
Example var total : word;

begin

total := MMiTotalFreeMemSize () ;

end;

Notes None.

325

MikroElektronika

mikoPascal PRO for PIC32

Multi Media Card Library

The Multi Media Card (MMC) is a Flash memory card standard. MMC cards are currently available in sizes up to and
including 32 GB and are used in cellular phones, digital audio players, digital cameras and PDA’s.

mikroPascal PRO for PIC32 provides a library for accessing data on Multi Media Card via SPI communication. This
library also supports SD (Secure Digital) and high capacity SDHC (Secure Digital High Capacity) memory cards.

Secure Digital Card

Secure Digital (SD) is a Flash memory card standard, based on the older Multi Media Card (MMC) format.
SD cards are currently available in sizes of up to and including 2 GB, and are used in digital cameras, digital camcorders,
handheld computers, media players, mobile phones, GPS receivers, video games and PDAs.

Secure Digital High Capacity Card

SDHC (Secure Digital High Capacity, SD 2.0) is an extension of the SD standard which increases card’s storage
capacity up to 32 GB by using sector addressing instead of byte addressing in the previous SD standard.

SDHC cards share the same physical and electrical form factor as older (SD 1.x) cards, allowing SDHC-devices to
support both newer SDHC cards and older SD-cards. The current standard limits the maximum capacity of an SDHC
card to 32 GB.

Important:

- Routines for file handling can be used only with FAT16 file system.

- Library functions create and read files from the root directory only.

- Library functions populate both FAT1 and FAT2 tables when writing to files, but the file data is being read from the
FAT1 table only; i.e. there is no recovery if the FAT1 table gets corrupted.

- If MMC/SD card has Master Boot Record (MBR), the library will work with the first available primary (logical) partition
that has non-zero size. If MMC/SD card has Volume Boot Record (i.e. there is only one logical partition and no
MBRs), the library works with entire card as a single partition. For more information on MBR, physical and logical
drives, primary/secondary partitions and partition tables, please consult other resources, e.g. Wikipedia and similar.

- Before write operation, make sure you don’t overwrite boot or FAT sector as it could make your card on PC or digital
camera unreadable. Drive mapping tools, such as Winhex, can be of a great assistance.

- Library uses SPI module for communication. The user must initialize the appropriate SPI module before using
the MMC Library.

- For MCUs with multiple SPI modules it is possible to initialize all of them and then switch by using the
SPI set Active () function. See the SPI Library functions.

The SPI module has to be initialized through sPIx Init Advanced routine with the following parameters:

- SPI Master

- 8bit mode

- secondary prescaler 1

- primary prescaler 64

- Slave Select disabled

- data sampled in the middle of data output time

- clock idle high

- Serial output data changes on transition from active clock state to idle clock state

Tip : Once the MMC/SD card is initialized, SPI module can be reinitialized at higher a speed. See the Mmc_Init and
Mmc_Fat_Init routines.

MikroElektronika 3206

mikroPascal PRO for PIC32

Library Dependency Tree

o
(mcrarie }——(cswng)
(e)

External dependencies of MMC Library

The following variable must be defined
in all projects using MMC library:

Description:

Example:

var Mmc_Chip_Select : sbit; sfr;
external ;

Chip select pin.

var Mmc Chip Select : sbit at LATFO
bit;

var Mmc Chip Select Direction
shit; sfr; external;

Direction of the chip select pin.

var Mmc Chip Select Direction : sbit
at TRISFO bit;

Library Routines

- Mmc_Init

- Mmc_Read_Sector
- Mmc_Write_Sector
- Mmc_Read_Cid
-Mmc_Read_Csd

Routines for file handling:

- Mmc_Fat_|Init

- Mmc_Fat_QuickFormat
- Mmc_Fat_Assign

- Mmc_Fat_Reset

- Mmc_Fat_Read

- Mmc_Fat_Rewrite

- Mmc_Fat_Append

- Mmc_Fat_Delete

- Mmc_Fat_Write

- Mmc_Fat_Set_File_Date
- Mmc_Fat_Get_File_Date

- Mmc_Fat_Get_File_Date Modified

- Mmc_Fat_Get_File_Size
- Mmc_Fat_Get_Swap_File

327

MikroElektronika

mikoPascal PRO for PIC32

Mmc_ Init

Prototype

function Mmc_Init(): word;

Description

Initializes MMC through hardware SPI interface.

Mmc_Init needs to be called before using other functions of this library.

Parameters

None.

Returns

- 0 - if MMC/SD card was detected and successfully initialized
- 1 - otherwise

Requires

The appropriate hardware SPI module must be previously initialized.
Global variables :

-Mmc Chip Select: Chip Select line
-Mmc Chip Select Direction: Direction of the Chip Select pin

must be defined before using this function.

Example

// MMC modulle connections

var Mmc_Chip_Select : sbit at LATFO_bit;

var Mmc_Chip_Select_Direction : sbit at TRISFO_bit;
// MMC modulle connections

// Initialize the SPI module
SPI1_Init_Advanced(_SPI_MASTER, _SPI_8 BIT, _SPI_PRESCALE SEC 1, _SPI_
PRESCALE_PRI_64, SPI_SS DISABLE,

_SP1_DATA SAMPLE_MIDDLE, SPI_CLK_IDLE HIGH, _SPI1 _ACTIVE 2 _
IDLE);
// Loop until MMC is initialized
while (Mmc_Init())

// Reinitialize the SPI module at higher speed (change primary prescaler).
SPI1_Init_Advanced(_SPI_MASTER, _SPI_8 BIT, _SPI_PRESCALE_SEC 1, _SPI_
PRESCALE_PRI_4, SPI1_SS_DISABLE,

_SPI_DATA_SAMPLE_MIDDLE, _SPI_CLK_IDLE_HIGH, _SPI_ACTIVE_2_
IDLE);

Notes

None.

MikroElektronika 328

mikroPascal PRO for PIC32

Mmc_Read_Sector

Prototype function Mmc Read Sector(sector: dword; var dbuff: array[512] of byte):
word;
Description | The function reads one sector (512 bytes) from MMC card.
Parameters | - sector: MMC/SD card sector to be read.
- dbuft £: buffer of minimum 512 bytes in length for data storage.
Returns - 0 - if reading was successful
- 1 -if an error occurred
Requires MMC/SD card must be initialized. See Mmc_|Init.
Example // read sector 510 of the MMC/SD card
var error : word;
sectorNo : dword;
dataBuffer : array[512] of byte;
éé(-:torNo = 510;
error := Mmc_Read_Sector(sectorNo, dataBuffer);
Notes None.
Mmc_Write_Sector
Prototype function Mmc Write Sector (sector: dword; var data: array[512] of byte):
word;
Description | The function writes 512 bytes of data to one MMC card sector.
Parameters | - sector: MMC/SD card sector to be written to.
- dbuf f: data to be written (buffer of minimum 512 bytes in length).
Returns - 0 - if writing was successful
- 1 - if there was an error in sending write command
- 2 - if there was an error in writing (data rejected)
Requires MMC/SD card must be initialized. See Mmc_Init.
Example // write to sector 510 of the MMC/SD card
var error : word;
sectorNo : dword;
dataBuffer : array[512] of byte;
éé(.:torNo := 510;
error = Mmc_Write_Sector(sectorNo, dataBuffer);
Notes None.

329

MikroElektronika

mikoPascal PRO for PIC32

Mmc_Read_Cid

Prototype function Mmc Read Cid(var data cid: array[l6] of byte): word;
Description | The function reads 16-byte CID register.
Parameters | - data cid: buffer of minimum 16 bytes in length for storing CID register content.
Returns - 0 - if CID register was read successfully

- 1 - if there was an error while reading
Requires MMC/SD card must be initialized. See Mmc_Init.
Example var error : word;

dataBuffer : array[16] of byte;

éééor = MmciReadicid(dataBuffer);

Notes None.

Mmc_Read_Csd

Prototype function Mmc Read Csd(var data for registers: array[l6] of byte): word;
Description | The function reads 16-byte CSD register.
Parameters | - data csd: buffer of minimum 16 bytes in length for storing CSD register content.
Returns - 0 - if CSD register was read successfully

- 1 - if there was an error while reading
Requires MMC/SD card must be initialized. See Mmc_Init.
Example var error : word;

dataBuffer : array[16] of byte;

éééor := Mmc Read Csd(dataBuffer);

Notes None.

MikroElektronika

330

mikroPascal PRO for PIC32

Mmc_Fat_Init

Prototype function Mmc Fat Init(): word;

Description | Initializes MMC/SD card, reads MMC/SD FAT16 boot sector and extracts necessary data needed by
the library.

Parameters | None.

Returns - 0 - if MMC/SD card was detected and successfully initialized
- 1 - if FAT16 boot sector was not found
- 255 - if MMC/SD card was not detected

Requires Global variables :

-Mmc Chip select: Chip Selectline
-Mmc Chip Select Direction: Direction of the Chip Select pin

must be defined before using this function.

The appropriate hardware SPI module must be previously initialized. See the SPIx_Init, SPIx_Init_
Advanced routines.

Example // MMC module connections

var Mmc_Chip_Select : sbit at LATFO bit;

var Mmc_Chip_Select_Direction : sbit at TRISFO_bit;
// MMC module connections

// Initialize the SPI module
SPI1_Init_Advanced(SPI_MASTER, _SPI_8 BIT, _SPI_PRESCALE_SEC 1, _SPI_
PRESCALE_PRI_64, SPI_SS_DISABLE,

_SPI_DATA_SAMPLE_MIDDLE, _SPI_CLK_IDLE_HIGH, _SPI_ACTIVE 2_
IDLE);
// Initialize MMC/SD card and MMC_FAT16 library globals
Mmc_Fat_Init();
// Reinitialize the SPI module at higher speed (change primary prescaler).
SPI11_Init_Advanced(_SPI_MASTER, _SPI_8_BIT, _SPI_PRESCALE_SEC 1, _SPI_
PRESCALE_PRI_4, SPI_SS DISABLE,

_SP1_DATA SAMPLE_MIDDLE, SPI_CLK_IDLE HIGH, _SP1_ACTIVE 2
IDLE);

Notes MMC/SD card has to be formatted to FAT16 file system.

331 MikroElektronika

mikoPascal PRO for PIC32

Mmc_Fat_QuickFormat

Prototype function Mmc_ Fat QuickFormat (var mmc_fat label : string[ll]) : word;

Description | Formats to FAT16 and initializes MMC/SD card.

Parameters | -mmc_fat label:volume label (11 characters in length). If less than 11 characters are provided, the
label will be padded with spaces. If null string is passed volume will not be labeled

Returns - 0 - if MMC/SD card was detected, successfully formated and initialized
- 1 - if FAT16 format was unseccessful
- 255 - if MMC/SD card was not detected

Requires The appropriate hardware SPI module must be previously initialized.

Example // Initialize the SP1 module
SPI1_Init_Advanced(_SPI_MASTER, _SPI_8 BIT, _SPI_PRESCALE SEC 1, _SPI_
PRESCALE_PRI 64, _SP1_SS DISABLE, _SP1 _DATA SAMPLE_MIDDLE, _SPI_CLK_IDLE
HIGH, _SPI_ACTIVE_ 2 IDLE);
// Format and initialize MMC/SD card and MMC_FAT16 library globals
Mmc_Fat_QuickFormat(“mikroE”);
// Reinitialize the SPI module at higher speed (change primary prescaler).
SPI1_Init_Advanced(_SPI_MASTER, _SPI_8 BIT, _SPI_PRESCALE SEC 1, _SPI_
PRESCALE_PRI 4, SPI_SS DISABLE, _SPI _DATA_SAMPLE MIDDLE, _SPI1_CLK_IDLE
HIGH, _SPI_ACTIVE_ 2 IDLE);

Notes This routine can be used instead or in conjunction with Mmc_Fat_Init routine.
If MMC/SD card already contains a valid boot sector, it will remain unchanged (except volume label
field) and only FAT and ROOT tables will be erased. Also, the new volume label will be set.

MikroElektronika 332

mikroPascal PRO for PIC32

Mmc_Fat_Assign

Prototype

function Mmc_Fat Assign (var filename: array[12] of char; file cre attr: byte):
word;

Description

Assigns file for file operations (read, write, delete...). All subsequent file operations will be applied on
an assigned file.

Parameters

- filename: name of the file that should be assigned for file operations. File name should be in DOS 8.3
(file_name.extension) format. The file name and extension will be automatically padded with spaces
by the library if they have less than length required (i.e. “mikro.tx” -> “mikro .tx “), so the user does no
have to take care of that. The file name and extension are case insensitive. The library will convert
them to proper case automatically, so the user does not have to take care of that.

Also, in order to keep backward compatibility with the first version of this library, file names can be
entered as UPPERCASE string of 11 bytes in length with no dot character between file name and
extension (i.e. “MIKROELETXT” -> MIKROELE.TXT). In this case last 3 characters of the string are
considered to be file extension.

- file cre attr: file creation and attributes flags. Each bit corresponds to the appropriate file
attribute:

Bit | Mask Description
0x01 Read Only
0x02 Hidden
0x04 System
0x08 Volume Label
0x10 Subdirectory
0x20 Archive

0x40 Device (internal use only, never found on disk)

o|jla|ldh|jlw|INM|~|O

File creation flag. If file does not exist and this flag is set, a

7 0x80 new file with specified name will be created.

Returns

- 1 - if file already exists or file does not exist but a new file is created.
- 0 - if file does not exist and no new file is created.

Requires

MMC/SD card and MMC library must be initialized for file operations. See Mmc_Fat_Init.

Example

// create file with archive attribut if it does not already exist
Mmc_Fat_Assign(“MIKROOO7 .TXT”,0xA0) ;

Notes

Long File Names (LFN) are not supported.

333

MikroElektronika

mikoPascal PRO for PIC32

Mmc_Fat_Reset

Prototype procedure Mmc Fat Reset (var size: dword);

Description | Procedure resets the file pointer (moves it to the start of the file) of the assigned file, so that the file
can be read.

Parameters | - size: buffer to store file size to. After file has been opened for reading, its size is returned through
this parameter.

Returns Nothing.

Requires MMC/SD card and MMC library must be initialized for file operations. See Mmc_Fat_|Init.
The file must be previously assigned. See Mmc_Fat_Assign.

Example var size dword;
Mr'neiFatiReset (size);

Notes None.

Mmc_Fat_Read

Prototype procedure Mmc Fat Read(var bdata : byte);

Description | Reads a byte from the currently assigned file opened for reading. Upon function execution file pointers
will be set to the next character in the file.

Parameters | - bdata: buffer to store read byte to. Upon this function execution read byte is returned through this
parameter.

Returns Nothing.

Requires MMC/SD card and MMC library must be initialized for file operations. See Mmc_Fat_|Init.
The file must be previously assigned. See Mmc_Fat_Assign.
The file must be opened for reading. See Mmc_Fat_Reset.

Example var character : byte;
Mmc Fat Read(character);

Notes None.

MikroElektronika

334

mikroPascal PRO for PIC32

Mmc_Fat_Rewrite

Prototype procedure Mmc Fat Rewrite();

Description | Opens the currently assigned file for writing. If the file is not empty its content will be erased.

Parameters | None.

Returns Nothing.

Requires MMC/SD card and MMC library must be initialized for file operations. See Mmc_Fat_Init.
The file must be previously assigned. See Mmc_Fat_Assign.

Example // open file for writing
Mmc Fat Rewrite();

Notes None.

Mmc_Fat_Append

Prototype procedure Mmc Fat Append () ;
Description | Opens the currently assigned file for appending. Upon this function execution file pointers will be
positioned after the last byte in the file, so any subsequent file write operation will start from there.
Parameters | None.
Returns Nothing.
Requires MMC/SD card and MMC library must be initialized for file operations. See Mmc_Fat_Init.
The file must be previously assigned. See Mmc_Fat_Assign.
Example // open file for appending
Mmc_Fat Append() ;
Notes None.

Mmc_Fat_Delete

Prototype procedure Mmc Fat Delete () ;

Description | Deletes currently assigned file from MMC/SD card.

Parameters | None.

Returns Nothing.

Requires MMC/SD card and MMC library must be initialized for file operations. See Mmc_Fat_|Init.
The file must be previously assigned. See Mmc_Fat_Assign.

Example // delete current file
Mmc Fat Delete();

Notes None.

335

MikroElektronika

mikoPascal PRO for PIC32

Mmc_Fat_Write

Prototype procedure Mmc Fat Write (var fdata: array[512] of byte; data len: word);
Description | Writes requested number of bytes to the currently assigned file opened for writing.
Parameters | - fdata: data to be written.

- data len: number of bytes to be written.
Returns Nothing.
Requires MMC/SD card and MMC library must be initialized for file operations. See Mmc_Fat_|Init.

The file must be previously assigned. See Mmc_Fat_Assign.

The file must be opened for writing. See Mmc_Fat_Rewrite or Mmc_Fat_Append.
Example var file contents : array[42] of byte;

Mmc Fat Write (file contents, 42); // write data to the assigned file
Notes None.

Mmc_Fat_Set File Date

Prototype

procedure Mmc Fat Set File Date(year: word; month: byte; day: byte; hours:

byte; mins: byte; seconds: byte);

Description

Sets the date/time stamp. Any subsequent file write operation will write this stamp to the currently
assigned file’s time/date attributes.

Parameters

- year: year attribute. Valid values: 1980-2107

- month: month attribute. Valid values: 1-12

- day: day attribute. Valid values: 1-31

- hours: hours attribute. Valid values: 0-23

- mins: minutes attribute. Valid values: 0-59

- seconds: seconds attribute. Valid values: 0-59

Returns

Nothing.

Requires

MMC/SD card and MMC library must be initialized for file operations. See Mmc_Fat_|Init.
The file must be previously assigned. See Mmc_Fat_Assign.

The file must be opened for writing. See Mmc_Fat_Rewrite or Mmc_Fat_Append.

Example

// April 1st 2005, 18:07:00

Mmc Fat Set File Date (2005, 4, 1, 18, 7, 0);

Notes

None.

MikroElektronika

336

mikroPascal PRO for PIC32

Mmc_Fat_Get File_Date

Prototype procedure MmciFatiGetiFileiDate (var year: word; var month: byte; var day:
byte; var hours: byte; var mins: byte);

Description | Reads time/date attributes of the currently assigned file.

Parameters | - year: buffer to store year attribute to. Upon function execution year attribute is returned through this
parameter.
- month: buffer to store month attribute to. Upon function execution month attribute is returned through
this parameter.
- davy: buffer to store day attribute to. Upon function execution day attribute is returned through this
parameter.
- hours: buffer to store hours attribute to. Upon function execution hours attribute is returned through
this parameter.
- mins: buffer to store minutes attribute to. Upon function execution minutes attribute is returned
through this parameter.

Returns Nothing.

Requires MMC/SD card and MMC library must be initialized for file operations. See Mmc_Fat_|Init.
The file must be previously assigned. See Mmc_Fat_Assign.

Example var year : word;

month, day, hours, mins : byte;

!\-/Ir;u-:_Fat_Get_Fi le_Date(year, month, day, hours, mins);

Notes None.

337

MikroElektronika

mikoPascal PRO for PIC32

Mmc_Fat Get_File_Date Modified

Prototype procedure Mmc Fat Get File Date Modified(var year: word; var month: byte;
var day: byte; var hours: byte; var mins: byte);

Description | Retrieves the last modification date/time for the currently selected file. Seconds are not being retrieved
since they are written in 2-sec increments.

Parameters | - year: buffer to store year attribute to. Upon function execution year attribute is returned through this
parameter.
- month: buffer to store month attribute to. Upon function execution month attribute is returned through
this parameter.
- day: buffer to store day attribute to. Upon function execution day attribute is returned through this
parameter.
- hours: buffer to store hours attribute to. Upon function execution hours attribute is returned through
this parameter.
- mins: buffer to store minutes attribute to. Upon function execution minutes attribute is returned
through this parameter.

Returns Nothing.

Requires The file must be assigned, see Mmc_Fat_Assign.

Example var year : word;

month, day, hours, mins : byte;

h-llr;wc-:_Fat_Get_Fi le_Date_Modified(year, month, day, hours, mins);

Mmc_Fat_Get_File_Size

Prototype function Mmc Fat Get File Size(): dword;

Description | This function reads size of the currently assigned file in bytes.

Parameters | None.

Returns This function returns size of active file (in bytes).

Requires MMC/SD card and MMC library must be initialized for file operations. See Mmc_Fat_|Init.
The file must be previously assigned. See Mmc_Fat_Assign.

Example var my file size : dword;
my file size := Mmc Fat Get File Size();

Notes None.

MikroElektronika 338

mikroPascal PRO for PIC32

Mmc_Fat_Get Swap_File

Prototype function Mmc_Fat Get Swap File(sectors cnt: dword; var filename : string([11];
file attr : byte) : dword;

Description | This function is used to create a swap file of predefined name and size on the MMC/SD media. If a

file with specified name already exists on the media, search for consecutive sectors will ignore sectors
occupied by this file. Therefore, it is recommended to erase such file if it already exists before calling
this function. If it is not erased and there is still enough space for a new swap file, this function will
delete it after allocating new memory space for a new swap file.
The purpose of the swap file is to make reading and writing to MMC/SD media as fast as possible,
by using the Mmc_Read_Sector() and Mmc_Write_Sector() functions directly, without potentially
damaging the FAT system. The swap file can be considered as a “window” on the media where the
user can freely write/read data. It's main purpose in this library is to be used for fast data acquisition;
when the time-critical acquisition has finished, the data can be re-written into a “normal” file, and
formatted in the most suitable way.

Parameters |- sectors cnt: number of consecutive sectors that user wants the swap file to have.

- filename: name of the file that should be assigned for file operations. File name should be in DOS 8.3
(file_name.extension) format. The file name and extension will be automatically padded with spaces
by the library if they have less than length required (i.e. “mikro.tx” -> “mikro .tx “), so the user does no
have to take care of that. The file name and extension are case insensitive. The library will convert
them to proper case automatically, so the user does not have to take care of that.
Also, in order to keep backward compatibility with the first version of this library, file names can be
entered as UPPERCASE string of 11 bytes in length with no dot character between file name and
extension (i.e. “MIKROELETXT” -> MIKROELE.TXT). In this case last 3 characters of the string are
considered to be file extension.
-file attr: file creation and attributes flags. Each bit corresponds to the appropriate file attribute:

Bit | Mask Description

0 0x01 Read Only

1 0x02 Hidden

2 0x04 System

3 0x08 Volume Label

4 0x10 Subdirectory

5 0x20 Archive

6 0x40 Device (internal use only, never found on disk)

7 0x80 Not used

Returns - Number of the start sector for the newly created swap file, if there was enough free space on the
MMC/SD card to create file of required size.
- 0 - otherwise.
Requires MMC/SD card and MMC library must be initialized for file operations. See Mmc_Fat_Init.

339

MikroElektronika

mikoPascal PRO for PIC32

Example

/) Try to create a swap file with archive atribute, whose size
will be at least 1000 sectors.

// 1T it succeeds, it sends No. of start sector over UART

var size : dword;

size := Mmc_Fat_Get_Swap_File(1000, “mikroE.txt>, 0x20);
if (size <> 0) then
begin
UART1_Write(0xAA);
UART1 _Write(Lo(size));
UART1 Write(Hi(size));
UART1_Write(Higher(size));
UART1 Write(Highest(size));
UART1 Write(OxAA);
end;

Notes

Long File Names (LFN) are not supported.

Library Example

This project consists of several blocks that demonstrate various aspects of usage of the Mmc_Fat16 library. These are:

- Creation of new file and writing down to it;

- Ope
- Ope

ning existing file and re-writing it (writing from start-of-file);
ning existing file and appending data to it (writing from end-of-file);

- Opening a file and reading data from it (sending it to UART terminal);
- Creating and modifying several files at once;

- Reading file contents;

- Deleting file(s);

- Creating the swap file (see Help for details);

Copy Code To
program MMC

// MMC modu
var MMC chi
var MMC chi
// eof MMC

const LINE

var
err txt :
file conte

filename

character :

loop, loo
size : lo

buffer :

Clipboard
_FAT Test;
le connections
p_select : sbit at LATGY9 bit; // for writing to output pin always use latch
p_select direction : sbit at TRISGY bit;
module connections
LEN = 43;
string[20];
nts : string[LINE LEN];
string([14]; // File names
byte;
p2 : byte;

ngint;

array[512] of byte;

MikroElektroni

ka 340

mikroPascal PRO for PIC32

// UART write text and new line (carriage return + line feed)
procedure UART Write Line(var uart text : string);
begin
UART1 Write Text (uart text);
UART1 Write(13);
UART1 Write(10);

end;
[/ Creates new file and writes some data to it
procedure M Create New File();
begin
filename [7] := ‘A’; // Set filename for single-file tests
Mmc Fat Set File Date(2011,1,12,11,9,0); // Set file date & time info
Mmc_ Fat Assign (filename, 0xAO); // Will not fi